The population structure of Mycobacterium tuberculosis is typically clonal therefore genotypic lineages can be unequivocally identified by characteristic markers such as mutations or genomic deletions. In addition, drug resistance is mainly mediated by mutations. These issues make multiplexed detection of selected mutations potentially a very powerful tool to characterise Mycobacterium tuberculosis. We used Multiplex Ligation-dependent Probe Amplification (MLPA) to screen for dispersed mutations, which can be successfully applied to Mycobacterium tuberculosis as was previously shown. Here we selected 47 discriminative and informative markers and designed MLPA probes accordingly to allow analysis with a liquid bead array and robust reader (Luminex MAGPIX technology). To validate the bead-based MLPA, we screened a panel of 88 selected strains, previously characterised by other methods with the developed multiplex assay using automated positive and negative calling. In total 3059 characteristics were screened and 3034 (99.2%) were consistent with previous molecular characterizations, of which 2056 (67.2%) were directly supported by other molecular methods, and 978 (32.0%) were consistent with but not directly supported by previous molecular characterizations. Results directly conflicting or inconsistent with previous methods, were obtained for 25 (0.8%) of the characteristics tested. Here we report the validation of the bead-based MLPA and demonstrate its potential to simultaneously identify a range of drug resistance markers, discriminate the species within the Mycobacterium tuberculosis complex, determine the genetic lineage and detect and identify the clinically most relevant non-tuberculous mycobacterial species. The detection of multiple genetic markers in clinically derived Mycobacterium tuberculosis strains with a multiplex assay could reduce the number of TB-dedicated screening methods needed for full characterization. Additionally, as a proportion of the markers screened are specific to certain Mycobacterium tuberculosis lineages each profile can be checked for internal consistency. Strain characterization can allow selection of appropriate treatment and thereby improve treatment outcome and patient management.
Cell rounding is a hallmark of the cytopathic effect induced by cytomegaloviruses. By screening a panel of deletion mutants of mouse cytomegalovirus (MCMV) a mutant was identified that did not elicit cell rounding and lacked the ability to form typical plaques. Altered cell morphology was assigned to the viral M25 gene. We detected an early 2.8 kb M25 mRNA directing the synthesis of a 105 kDa M25 protein, and confirmed that a late 3.1 kb mRNA encodes a 130 kDa M25 tegument protein. Virions lacking the M25 tegument protein were of smaller size because the tegument layer between capsid and viral envelope was reduced. The ΔM25 mutant did not provoke the rearrangement of the actin cytoskeleton observed after wild-type MCMV infection, and isolated expression of the M25 proteins led to cell size reduction, confirming that they contribute to the morphological changes. Yields of progeny virus and cell-to-cell spread of the ΔM25 mutant in vitro were diminished and replication in vivo was impaired. The identification of an MCMV gene involved in cell rounding provides the basis for investigating the role of this cytopathic effect in CMV pathogenesis.
In contrast to most other antimycobacterial drugs where--particularly in multidrug-resistant (MDR) strains--a limited number of resistance mutations dominate, pyrazinamide (PZA) resistance associated mutations remain highly diverse with limited clustering. This apparent lack of evolutionary selection for successful PZA resistance mechanisms deserves attention. A clear understanding of the epidemiology of PZA resistance acquisition and spread would be expected to result in important insights into how PZA might be better exploited in treatment regimens to minimize the amplification of Mycobacterium tuberculosis (MTB) drug resistance. We propose that PZA resistance typically induces a fitness cost that impairs MTB transmission. This would explain the lack of extensive clustering for PZA-resistant mutants. Our hypothesis also leads to a series of testable predictions which we outline that could confirm or refute our ideas.
BackgroundMultiplex ligation-dependent probe amplification (MLPA) is a powerful tool to identify genomic polymorphisms. We have previously developed a single nucleotide polymorphism (SNP) and large sequence polymorphisms (LSP)-based MLPA assay using a read out on a liquid bead array to screen for 47 genetic markers in the Mycobacterium tuberculosis genome. In our assay we obtain information regarding the Mycobacterium tuberculosis lineage and drug resistance simultaneously. Previously we called the presence or absence of a genotypic marker based on a threshold signal level. Here we present a more elaborate data analysis method to standardize and streamline the interpretation of data generated by MLPA. The new data analysis method also identifies intermediate signals in addition to classification of signals as positive and negative. Intermediate calls can be informative with respect to identifying the simultaneous presence of sensitive and resistant alleles or infection with multiple different Mycobacterium tuberculosis strains.ResultsTo validate our analysis method 100 DNA isolates of Mycobacterium tuberculosis extracted from cultured patient material collected at the National TB Reference Laboratory of the National Center for Tuberculosis and Lung Diseases in Tbilisi, Republic of Georgia were tested by MLPA. The data generated were interpreted blindly and then compared to results obtained by reference methods. MLPA profiles containing intermediate calls are flagged for expert review whereas the majority of profiles, not containing intermediate calls, were called automatically. No intermediate signals were identified in 74/100 isolates and in the remaining 26 isolates at least one genetic marker produced an intermediate signal.ConclusionBased on excellent agreement with the reference methods we conclude that the new data analysis method performed well. The streamlined data processing and standardized data interpretation allows the comparison of the Mycobacterium tuberculosis MLPA results between different experiments. All together this will facilitate the implementation of the MLPA assay in different settings.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-572) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.