Maturity-onset diabetes of the young type 3 (MODY3) is caused by haploinsufficiency of hepatocyte nuclear factor-1alpha (encoded by TCF1). Tcf1-/- mice have type 2 diabetes, dwarfism, renal Fanconi syndrome, hepatic dysfunction and hypercholestrolemia. Here we explore the molecular basis for the hypercholesterolemia using oligonucleotide microchip expression analysis. We demonstrate that Tcf1-/- mice have a defect in bile acid transport, increased bile acid and liver cholesterol synthesis, and impaired HDL metabolism. Tcf1-/- liver has decreased expression of the basolateral membrane bile acid transporters Slc10a1, Slc21a3 and Slc21a5, leading to impaired portal bile acid uptake and elevated plasma bile acid concentrations. In intestine and kidneys, Tcf1-/- mice lack expression of the ileal bile acid transporter (Slc10a2), resulting in increased fecal and urinary bile acid excretion. The Tcf1 protein (also known as HNF-1alpha) also regulates transcription of the gene (Nr1h4) encoding the farnesoid X receptor-1 (Fxr-1), thereby leading to reduced expression of small heterodimer partner-1 (Shp-1) and repression of Cyp7a1, the rate-limiting enzyme in the classic bile acid biosynthesis pathway. In addition, hepatocyte bile acid storage protein is absent from Tcf1-/- mice. Increased plasma cholesterol of Tcf1-/- mice resides predominantly in large, buoyant, high-density lipoprotein (HDL) particles. This is most likely due to reduced activity of the HDL-catabolic enzyme hepatic lipase (Lipc) and increased expression of HDL-cholesterol esterifying enzyme lecithin:cholesterol acyl transferase (Lcat). Our studies demonstrate that Tcf1, in addition to being an important regulator of insulin secretion, is an essential transcriptional regulator of bile acid and HDL-cholesterol metabolism.
Bile acid synthesis plays a critical role in the maintenance of mammalian cholesterol homeostasis. The CYP7A1 gene encodes the enzyme cholesterol 7α-hydroxylase, which catalyzes the initial step in cholesterol catabolism and bile acid synthesis. We report here a new metabolic disorder presenting with hyperlipidemia caused by a homozygous deletion mutation in CYP7A1. The mutation leads to a frameshift (L413fsX414) that results in loss of the active site and enzyme function. High levels of LDL cholesterol were seen in three homozygous subjects. Analysis of a liver biopsy and stool from one of these subjects revealed double the normal hepatic cholesterol content, a markedly deficient rate of bile acid excretion, and evidence for upregulation of the alternative bile acid pathway. Two male subjects studied had hypertriglyceridemia and premature gallstone disease, and their LDL cholesterol levels were noticeably resistant to 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. One subject also had premature coronary and peripheral vascular disease. Study of the kindred, which is of English and Celtic background, revealed that individuals heterozygous for the mutation are also hyperlipidemic, indicating that this is a codominant disorder.
We studied the effect of chenodeoxycholic acid in 17 patients with cerebrotendinous xanthomatosis. Before treatment, all subjects were symptomatic, with Achilles tendon xanthomas (in 15 of 17), cataracts (in 12 of 17), dementia (in 13 of 17), pyramidal-tract signs (in all 17), cerebellar dysfunction (in 13 of 17), mild peripheral neuropathy (in 7 of 17), electroencephalographic abnormalities (in 10 of 13), and abnormal cerebral computerized axial tomographic scans (in 10 of 12). After at least one year of chenodeoxycholic acid treatment (750 mg per day), dementia cleared in 10 subjects, and pyramidal and cerebellar signs disappeared in 5 and improved in another 8. Peripheral neuropathy was no longer detected in six. The electroencephalogram became normal in five and showed fewer abnormalities in another three subjects. Cerebral computerized axial tomographic scans improved in seven patients; the changes included the disappearance of a cerebellar xanthoma in one case. Concomitantly, mean plasma cholestanol levels declined threefold, and abnormal bile acid synthesis was suppressed. We conclude that long-term therapy with chenodeoxycholic acid may correct the biochemical abnormalities and arrest and possibly reverse the progression of cerebrotendinous xanthomatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.