Acetylated wood (WAc) shows improved properties largely due to the reduced amount of water in its cell wall, but the exact mechanism of water reduction remains unclear. Acetylation reduces hydroxyl (OH) content by acetyl (Ac) substitution but may also limit water access to unmodified OH groups by steric hindrance. In the present work, the accessibility of OH groups in acetylated or propionylated Radiata pine (Pinus radiataD. Don) wood (WAcand WPr) was investigated by deuterium exchange, saponification in sodium hydroxide followed by high-performance liquid chromatography (HPLC) analysis and weight percentage gain determination of the modified samples. Acetylation reduced OH accessibility (OHA) to a greater extent than would be predicted, if OH substitution were the only responsible mechanism for accessibility reduction. The combination of deuterium exchange and saponification results provides strong evidence that steric hindrance plays a key role in reduction of water accessibility to unmodified OH groups in WAc. The supramolecular architecture of WPrsamples seems to be modified by the propionylation reaction, which leads to increased OHAat low levels of substitution. This suggests that molecular restructuring within the cell wall exposes new OH groups after propionylation. At higher levels of substitution, however, the WPrexhibited less OHAthan expected indicating steric hindrance from the propionyl groups.
Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.