The transient interaction between tidal currents and the rotation of a horizontal axis turbine rotor have the potential to induce high asymmetric loadings, which are subsequently transmitted to the drive shaft and potentially high speed drive train components. To mitigate the potential for early component failure, analysis of asymmetric loading on marine turbines is therefore fundamental to the design process. To investigate these loads a turbine mounted on a circular stanchion has been used to highlight the effects of introducing more realistic boundary conditions, over a rotational cycle of the turbine. The consequences on the turbine's performance characteristics and crucial structural loading are shown. Depending on their wavelength, waves can also have a significant effect on the overall design decisions and placement of devices. Thrust loading and bending moments applied to the drive shaft can be of the order of hundreds of kN and kNm respectively. This leads to the need to not only size the drive shaft and bearings to account for axisymmetric loading or thrust, but to also consider large asymmetric loads.Knowledge of the flow regime can allow designers to evaluate material selection for components (i.e. for blades, etc.) and incorporate some deformation capability of the turbine blades to increase the power output and potentially alleviate some of the stress distribution through key structural points, i.e. drive shaft, bearing connectors, etc. The resulting data can then be used to estimate component life via fatigue prediction. This paper includes a multi-physics approach to modelling tidal energy devices and the potential for modelling to inform device condition monitoring
The transient behaviour of the sea and the rotation of a turbine rotor can result in high asymmetric loadings, which are transmitted to the drive shaft. A turbine mounted on a circular stanchion has been used to highlight the effects of introducing more realistic boundary conditions, over a rotational cycle of the turbine. The consequences on the turbine's performance characteristics and crucial structural loading are shown. The position of the turbine relative to the support structure and its alignment to the flow direction can have significant temporal hydrodynamic and structural effects. Depending on their wavelength, waves can also have a significant effect on the overall design decisions and placement of devices. Thrust loading and bending moments applied to the drive shaft can be of the order of hundreds of kN and kNm, respectively. This leads to the need to not only size the drive shaft and bearings to account for axisymmetric thrust but also consider large asymmetric loads.Knowledge of the flow regime can allow the designers to evaluate material selection for components (i.e. for blades, etc.) and incorporate some deformation capability of the turbine blades to increase the power output and potentially alleviate some of the stress distribution through key structural points, that is, drive shaft, bearing connectors, etc. The resulting data can then be used to estimate component life via fatigue prediction.This chapter includes a multi-physics approach to modelling tidal energy devices and the potential for modelling to inform device condition monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.