Al-Si-coated boron-alloyed steels are the most widely used press-hardened steels (PHSs), which offers good oxidation resistance during hot forming due to the presence of the near eutectic Al-Si coating. In this study, a recently developed novel un-coated oxidation resistant PHS, called coating-free PHS (CF-PHS), is introduced as an alternative to the commercial Al-Si coated PHSs. With tailored additions of Cr, Mn, and Si, the new steel demonstrates superior oxidation resistance with a sub-micron oxide layer after the conventional hot stamping process. Hence, it does not require shot blasting before the subsequent welding and E-coating process. Two CF-PHS grades have been developed with ultimate tensile strengths of approximately 1.2 and 1.7 GPa, respectively. Both grades have a total elongation of 8–9%, exceeding the corresponding Al-Si-coated PHS grades (1.0 GPa/6–7%, 1.5 GPa/6–7%). Furthermore, the bendability of CF-PHS was similar to the corresponding Al-Si PHS grades. On the other hand, performance evaluations relevant to automotive applications, such as weldability, the E-coat adhesion, and tailor-welded hot stamp door ring, were also conducted on the CF-PHS steel to satisfy the requirements of manufacturing.
Press hardening steel (PHS) applications predominately use 22MnB5 AlSi coated in the automotive industry. This material has a limited supply chain. Increasing the tensile strength and bendability of the PHS material will enable light-weighting while maintaining crash protection. In this paper, a novel PHS is introduced, and properties are compared to 22MnB5. The new Coating Free PHS (CFPHS) steel, 25MnCr, has increased carbon, with chromium and silicon additions for oxidation resistance. Its ultimate tensile strength (UTS) of 1.7 GPa with bending angle above 55° at 1.4mm thickness improves upon the 22MnB5 grade. This steel is not pre-coated, is oxidation resistant at high temperature, thus eliminating the need for AlSi or shot blasting post processing to maintain surface quality. Microstructural mechanisms used to enhance bendability and energy absorption are discussed for the novel steel. Performance evaluations such as: weldability, component level crush and intrusion testing and e-coat adhesion, are conducted on samples from industrial coils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.