Dehydration is a common condition characterized by a decrease in total body water. Acute dehydration can cause physical and cognitive impairment, heat stroke and exhaustion, and, if severe and uncorrected, even death. The health effects of chronic mild dehydration are less well studied with urolithiasis (kidney stones) the only condition consistently associated with it. Aside from infants and those with particular medical conditions, athletes, military personnel, manual workers, and older adults are at particular risk of dehydration due to their physical activity, environmental exposure, and/or challenges in maintaining fluid homeostasis. This review describes the different approaches that have been explored for hydration assessment in adults. These include clinical indicators perceived by the patient or detected by a practitioner and routine laboratory analyses of blood and urine. These techniques have variable accuracy and practicality outside of controlled environments, creating a need for simple, portable, and rapid hydration monitoring devices. We review the wide array of devices proposed for hydration assessment based on optical, electromagnetic, chemical, and acoustical properties of tissue and bodily fluids. However, none of these approaches has yet emerged as a reliable indicator in diverse populations across various settings, motivating efforts to develop new methods of hydration assessment.
Analysis of sweat is of interest for a variety of diagnosis and monitoring applications in healthcare. In this work, detailed measurements of the dielectric properties of solutions representing the major components of sweat are presented. The measurements include aqueous solutions of sodium chloride (NaCl), potassium chloride (KCl), urea, and lactic acid, as well as their mixtures. Moreover, mixtures of NaCl, KCl, urea, and lactic acid, mimicking artificial sweat at different hydration states, are characterized, and the data are fitted to a Cole–Cole model. The complex dielectric permittivity for all prepared solutions and mixtures is studied in the range of 1–20 GHz, at temperature of 23 °C, with ionic concentrations in the range of 0.01–1.7 mol/L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.