This article discusses parameters relevant for successful translation of research on different cell sources into clinically applicable cell therapies: the influence of the intervertebral disc microenvironment on the cell phenotype, issues associated with cell culture and technical preparation of cell products, as well as discussing current regulatory requirements. There are advantages and disadvantages of each proposed cell type, but no strong evidence to favour any one particular cell source at the moment.
Subjects affected by a cleft with visible impairments are more dissatisfied with their facial appearance than are subjects with invisible impairments. Satisfaction with facial appearance among 10- and 15-year-old subjects with a cleft may be associated with their self-reported levels of psychosocial functioning. Measuring self-satisfaction with appearance may help to identify subjects at risk from adjustment problems.
Our study's results show that a lumbar decompression procedure without arthrodesis in a consecutive cohort of patients with lumbar spinal stenosis with degenerative spondylolisthesis had a significant post-operative improvement in ODI, EQ-5D, and VAS. The rate of post-operative instability and subsequent fusion is not high. Only one in 10 patients in this group ended up needing a subsequent fusion at a mean follow-up of 36 months, indicating that fusion is not always necessary in these patients.
Objective The purpose of this study was to investigate whether a simple, biologically robust method for inducing calcification of degenerate intervertebral discs (IVD) could be developed to provide an alternative treatment for patients requiring spinal fusion. Design Nucleus pulposus (NP) cells isolated from 14 human IVDs were cultured in monolayer and exposed to osteogenic medium, 1,25-dihydroxyvitamin D (VitD), parathyroid hormone (PTH), and bone morphogenic proteins (BMPs) 2/7 to determine if they could become osteogenic. Similarly explant cultures of IVDs from 11 patients were cultured in osteogenic media with and without prior exposure to VitD and BMP-2. Osteogenic differentiation was assessed by alkaline phosphatase activity and areas of calcification identified by alizarin red or von Kossa staining. Expression of osteogenic genes during monolayer culture was determined using polymerase chain reaction and explant tissues assessed for BMP inhibitors. Human bone marrow-derived mesenchymal stromal cells (MSCs) were used for comparison. Results Standard osteogenic media was optimum for promoting mineralization by human NP cells in monolayer. Some osteogenic differentiation was observed with 10 nM VitD, but none following application of PTH or BMPs. Regions of calcification were detected in 2 of the eleven IVD tissue explants, one cultured in osteogenic media and one with the addition of VitD and BMP-2. Conclusions Human NP cells can become osteogenic in monolayer and calcification of the extracellular matrix can also occur, although not consistently. Inhibitory factors within either the cells or the extracellular matrix may hinder osteogenesis, indicating that a robust biological fusion at this time requires further optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.