It is predicted that surface ocean pH will reach 7.9, possibly 7.8 by the end of this century due to increased carbon dioxide (CO(2)) in the atmosphere and in the surface ocean. While aragonite-rich sediments don't begin to dissolve until a threshold pH of ~7.8 is reached, dissolution from high-Mg calcites is evident with any drop in pH. Indeed, it is high-Mg calcite that dominates the reaction of carbonate sediments with increased CO(2), which undergoes a rapid neomorphism process to a more stable, low-Mg calcite. This has major implications for the future of the high-Mg calcite producing organisms within coral reef ecosystems. In order to understand any potential buffering system offered by the dissolution of carbonate sediments under a lower oceanic pH, this process of high-Mg calcite dissolution in the reef environment must be further elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.