Understanding kidney disease relies upon defining the complexity of cell types and states, their associated molecular profiles, and interactions within tissue neighborhoods. We have applied multiple single-cell or -nucleus assays (>400,000 nuclei/cells) and spatial imaging technologies to a broad spectrum of healthy reference (n = 42) and disease (n = 42) kidneys. This has provided a high resolution cellular atlas of 100 cell types that include rare and novel cell populations. The multi-omic approach provides detailed transcriptomic profiles, epigenomic regulatory factors, and spatial localizations for major cell types spanning the entire kidney. We further identify and define cellular states altered in kidney injury, encompassing cycling, adaptive or maladaptive repair, transitioning and degenerative states affecting several segments. Molecular signatures of these states permitted their localization within injury neighborhoods using spatial transcriptomics, and large-scale 3D imaging analysis of ~1.2 million neighborhoods provided linkages to active immune responses. These analyses further defined biological pathways relevant to injury niches, including signatures underlying the transition from reference to predicted maladaptive states that were associated with a decline in kidney function during chronic kidney disease. This human kidney cell atlas, including injury cell states and neighborhoods, will be a valuable resource for future studies.
Marburg virus (MARV) is a lipid-enveloped virus from the Filoviridae family containing a negative sense RNA genome. One of the seven MARV genes encodes the matrix protein VP40, which forms a matrix layer beneath the plasma membrane inner leaflet to facilitate budding from the host cell. MARV VP40 (mVP40) has been shown to be a dimeric peripheral protein with a broad and flat basic surface that can associate with anionic phospholipids such as phosphatidylserine. Although a number of mVP40 cationic residues have been shown to facilitate binding to membranes containing anionic lipids, much less is known on how mVP40 assembles to form the matrix layer following membrane binding. Here we have used hydrogen/deuterium exchange (HDX) mass spectrometry to determine the solvent accessibility of mVP40 residues in the absence and presence of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate. HDX analysis demonstrates that two basic loops in the mVP40 C-terminal domain make important contributions to anionic membrane binding and also reveals a potential oligomerization interface in the C-terminal domain as well as a conserved oligomerization interface in the mVP40 N-terminal domain. Lipid binding assays confirm the role of the two basic patches elucidated with HD/X measurements, whereas molecular dynamics simulations and membrane insertion measurements complement these studies to demonstrate that mVP40 does not appreciably insert into the hydrocarbon region of anionic membranes in contrast to the matrix protein from Ebola virus. Taken together, we propose a model by which association of the mVP40 dimer with the anionic plasma membrane facilitates assembly of mVP40 oligomers.
Descriptions of materials, metrological methods, computational methods, and supplementary results. Figures of HDX-MS publications and citations versus publication year, histogram of peptide sequence lengths, sequence coverage maps, performance of instrumentsoftware configurations, repeatability plots, %E corrected peptide t HDX versus log 10 (t HDX ) for eight peptides. Tables of instrumentation,software, peptide search methodology, and operating conditions of proteolytic, chromatographic components, and effects of peptide charge on deuterium uptake (PDF)
Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.