It can be assumed that changes in the gut microbiota play a crucial role in the development of type 2 diabetes mellitus (T2DM). It is generally accepted that regular physical activity is beneficial for the prevention and therapy of T2DM. Therefore, this review analyzes the effects of exercise training on the gut microbiota composition and the intestinal barrier function in T2DM. The current literature shows that regular exercise can influence the gut microbiota composition and the intestinal barrier function with ameliorative effects on T2DM. In particular, increases in the number of short-chain fatty acid (SCFA)-producing bacteria and improvements in the gut barrier integrity with reduced endotoxemia seem to be key points for positive interactions between gut health and T2DM, resulting in improvements in low-grade systemic inflammation status and glycemic control. However, not all aspects are known in detail and further studies are needed to further examine the efficacy of different training programs, the role of myokines, SCFA-producing bacteria, and SCFAs in the relevant metabolic pathways. As microbial signatures differ in individuals who respond differently to exercise training programs, one scientific focus could be the development of computer-based methods for the personalized analysis of the gut microbiota in the context of a microbiota/microbiome-based training program.
Moderate endurance exercise leads to an improvement in cardiovascular performance, stress resilience, and blood function. However, the influence of chronic endurance exercise over several hours or days is still largely unclear. We examined the influence of a non-stop 160.9/230 km ultramarathon on body composition, stress/cardiac response, and nutrition parameters. Blood samples were drawn before (pre) and after the race (post) and analyzed for ghrelin, insulin, irisin, glucagon, cortisol, kynurenine, neopterin, and total antioxidant capacity. Additional measurements included heart function by echocardiography, nutrition questionnaires, and body impedance analyses. Of the 28 included ultra-runners (7f/21m), 16 participants dropped out during the race. The remaining 12 finishers (2f/10m) showed depletion of antioxidative capacities and increased inflammation/stress (neopterin/cortisol), while energy metabolism (insulin/glucagon/ghrelin) remained unchanged despite a high negative energy balance. Free fat mass, protein, and mineral content decreased and echocardiography revealed a lower stroke volume, left end diastolic volume, and ejection fraction post race. Optimizing nutrition (high-density protein-rich diet) during the race may attenuate the observed catabolic and inflammatory effects induced by ultramarathon running. As a rapidly growing discipline, new strategies for health prevention and extensive monitoring are needed to optimize the athletes’ performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.