Cancer cells have diverse mechanisms for utilizing the vasculature; they can initiate the formation of new blood vessels from pre-existing ones (sprouting angiogenesis) or they can form cohesive interactions with the abluminal surface of pre-existing vasculature in the absence of sprouting (cooption). The later process has received renewed attention due to the suggested role of blood vessel co-option in resistance to anti-angiogenic therapies and the reported perivascular positioning and migratory patterns of cancer cells during tumor dormancy and invasion, respectively. However, only a few molecular mechanisms have been identified that contribute to the process of co-option and there has not been a formal survey of cell lines and laboratory models that can be used to study co-option in different organ microenvironments; thus, we have carried out a comprehensive literature review on this topic and have identified cell lines and described the laboratory models that are used to study blood vessel co-option in cancer. Put into practice, these models may help to shed new light on the molecular mechanisms that drive blood vessel co-option during tumor dormancy, invasion, and responses to different therapies.
Post brain colonization, cancer cells may adhere to and spread along the abluminal surface of the vasculature providing advantageous access to oxygen, nutrients, and vessel-derived paracrine factors. For example, brain-tropic melanoma cells are well-known to invade along or within blood vessels at the invasive front, but the molecular mechanisms that guide this process are not well-characterized. We have used melanoma cells of different phenotypic states (melanocytic versus mesenchymal) to characterize different modes of perivascular invasion in the brain. We find that Sox9hi mesenchymal state melanoma cells undergo pericyte-like spreading along brain blood vessels via a Snail1-dependent process; in contrast, Sox10hi melanocytic state melanoma form proliferative, perivascular clusters. Snai1 deletion in mesenchymal state melanoma cells diminishes Tgfβ-induced expression of Pdgfrβ which impairs Tgfβ/Pdgf ligand driven motility along the brain microvasculature and dramatically reduces perivascular dispersal of melanoma cells throughout the brain post-colonization. These data suggest that, depending on their transcriptional/phenotypic state, some melanoma cells may appropriate signals that typically mediate endothelial cell:pericyte cross talk as an adaptive mechanism for maintaining vessel proximity and motility in the brain microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.