Copyright 2016 by the American Association for the Advancement of Science; all rights reserved.Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ( safe limit ).We estimate that land use and related pressures have already reduced local biodiversity intactness-the average proportion of natural biodiversity remaining in local ecosystems-beyond its recently proposed planetary boundary across 58.1%of the worlds land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development
The task of measuring the decline of global biodiversity and instituting changes to halt and reverse this downturn has been taken up in response to the Convention on Biological Diversity's 2010 target. It is an undertaking made more difficult by the complex nature of biodiversity and the consequent difficulty in accurately gauging its depletion. In the Living Planet Index, aggregated population trends among vertebrate species indicate the rate of change in the status of biodiversity, and this index can be used to address the question of whether or not the 2010 target has been achieved. We investigated the use of generalized additive models in aggregating large quantities of population trend data, evaluated potential bias that results from collation of existing trends, and explored the feasibility of disaggregating the data (e.g., geographically, taxonomically, regionally, and by thematic area). Our results show strengths in length and completeness of data, little evidence of bias toward threatened species, and the possibility of disaggregation into meaningful subsets. Limitations of the data set are still apparent, in particular the dominance of bird data and gaps in tropical-species population coverage. Population-trend data complement the longer-term, but more coarse-grained, perspectives gained by evaluating species-level extinction rates. To measure progress toward the 2010 target, indicators must be adapted and strategically supplemented with existing data to generate meaningful indicators in time. Beyond 2010, it is critical a strategy be set out for the future development of indicators that will deal with existing data gaps and that is intricately tied to the goals of future biodiversity targets.
Dispersal, the behaviour ensuring gene flow, tends to covary with a number of morphological, ecological and behavioural traits. While species-specific dispersal behaviours are the product of each species' unique evolutionary history, there may be distinct interspecific patterns of covariation between dispersal and other traits ('dispersal syndromes') due to their shared evolutionary history or shared environments. Using dispersal, phylogeny and trait data for 15 terrestrial and semi-terrestrial animal Orders (> 700 species), we tested for the existence and consistency of dispersal syndromes across species. At this taxonomic scale, dispersal increased linearly with body size in omnivores, but decreased above a critical length in herbivores and carnivores. Species life history and ecology significantly influenced patterns of covariation, with higher phylogenetic signal of dispersal in aerial dispersers compared with ground dwellers and stronger evidence for dispersal syndromes in aerial dispersers and ectotherms, compared with ground dwellers and endotherms. Our results highlight the complex role of dispersal in the evolution of species life-history strategies: good dispersal ability was consistently associated with high fecundity and survival, and in aerial dispersers it was associated with early maturation. We discuss the consequences of these findings for species evolution and range shifts in response to future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.