Common obesity risk variants have been associated with macronutrient intake; however, these associations' generalizability across populations has not been demonstrated. We investigated the associations between 6 obesity risk variants in (or near) the NEGR1, TMEM18, BDNF, FTO, MC4R, and KCTD15 genes and macronutrient intake (carbohydrate, protein, ethanol, and fat) in 3 Population Architecture using Genomics and Epidemiology (PAGE) studies: the Multiethnic Cohort Study (1993-2006) (n = 19,529), the Atherosclerosis Risk in Communities Study (1987-1989) (n = 11,114), and the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) Study, which accesses data from the Third National Health and Nutrition Examination Survey (1991-1994) (n = 6,347). We used linear regression, with adjustment for age, sex, and ethnicity, to estimate the associations between obesity risk genotypes and macronutrient intake. A fixed-effects meta-analysis model showed that the FTO rs8050136 A allele (n = 36,973) was positively associated with percentage of calories derived from fat (βmeta = 0.2244 (standard error, 0.0548); P = 4 × 10(-5)) and inversely associated with percentage of calories derived from carbohydrate (βmeta = -0.2796 (standard error, 0.0709); P = 8 × 10(-5)). In the Multiethnic Cohort Study, percentage of calories from fat assessed at baseline was a partial mediator of the rs8050136 effect on body mass index (weight (kg)/height (m)(2)) obtained at 10 years of follow-up (mediation of effect = 0.0823 kg/m(2), 95% confidence interval: 0.0559, 0.1128). Our data provide additional evidence that the association of FTO with obesity is partially mediated by dietary intake.
We performed a Phenome-wide association study (PheWAS) utilizing diverse genotypic and phenotypic data existing across multiple populations in the National Health and Nutrition Examination Surveys (NHANES), conducted by the Centers for Disease Control and Prevention (CDC), and accessed by the Epidemiological Architecture for Genes Linked to Environment (EAGLE) study. We calculated comprehensive tests of association in Genetic NHANES using 80 SNPs and 1,008 phenotypes (grouped into 184 phenotype classes), stratified by race-ethnicity. Genetic NHANES includes three surveys (NHANES III, 1999–2000, and 2001–2002) and three race-ethnicities: non-Hispanic whites (n = 6,634), non-Hispanic blacks (n = 3,458), and Mexican Americans (n = 3,950). We identified 69 PheWAS associations replicating across surveys for the same SNP, phenotype-class, direction of effect, and race-ethnicity at p<0.01, allele frequency >0.01, and sample size >200. Of these 69 PheWAS associations, 39 replicated previously reported SNP-phenotype associations, 9 were related to previously reported associations, and 21 were novel associations. Fourteen results had the same direction of effect across more than one race-ethnicity: one result was novel, 11 replicated previously reported associations, and two were related to previously reported results. Thirteen SNPs showed evidence of pleiotropy. We further explored results with gene-based biological networks, contrasting the direction of effect for pleiotropic associations across phenotypes. One PheWAS result was ABCG2 missense SNP rs2231142, associated with uric acid levels in both non-Hispanic whites and Mexican Americans, protoporphyrin levels in non-Hispanic whites and Mexican Americans, and blood pressure levels in Mexican Americans. Another example was SNP rs1800588 near LIPC, significantly associated with the novel phenotypes of folate levels (Mexican Americans), vitamin E levels (non-Hispanic whites) and triglyceride levels (non-Hispanic whites), and replication for cholesterol levels. The results of this PheWAS show the utility of this approach for exposing more of the complex genetic architecture underlying multiple traits, through generating novel hypotheses for future research.
Background C-reactive protein (CRP) is a biomarker of inflammation. Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with CRP concentrations and inflammation-related traits such as cardiovascular disease, type 2 diabetes, and obesity. We aimed to replicate previous CRP-SNP associations, assess whether these associations generalize to additional race/ethnicity groups, and evaluate inflammation-related SNPs for a potentially pleiotropic association with CRP. Methods and Results We selected and analyzed 16 CRP-associated and 250 inflammation-related GWAS SNPs among 40,473 African American, American Indian, Asian/Pacific Islander, European American, and Hispanic participants from 7 studies collaborating in the Population Architecture using Genomics and Epidemiology (PAGE) study. Fixed-effect meta-analyses combined study-specific race/ethnicity-stratified linear regression estimates to evaluate the association between each SNP and high-sensitivity CRP. Overall, 18 SNPs in 8 loci were significantly associated with CRP (Bonferroni-corrected p<3.1×10−3 for replication, p<2.0×10−4 for pleiotropy): Seven of these were specific to European Americans, while 9 additionally generalized to African Americans (1), Hispanics (5), or both (3); 1 SNP was seen only in African Americans and Hispanics. Two SNPs in the CELSR2/PSRC1/SORT1 locus showed a potentially novel association with CRP: rs599839 (p=2.0×10−6) and rs646776 (p=3.1×10−5). Conclusions We replicated 16 SNP-CRP associations, 10 of which generalized to African Americans and/or Hispanics. We also identified potentially novel pleiotropic associations with CRP for two SNPs previously associated with coronary artery disease and LDL cholesterol. These findings demonstrate the benefit of evaluating genotype-phenotype associations in multiple race/ethnicity groups, and of looking for pleiotropic relationships among SNPs previously associated with related phenotypes.
Background A number of genetic variants have been discovered by recent genome-wide association studies for their associations with clinical coronary heart disease (CHD). However, it is unclear whether these variants are also associated with the development of CHD as measured by subclinical atherosclerosis phenotypes, ankle brachial index (ABI), carotid artery intima-media thickness (cIMT) and carotid plaque. Methods Ten CHD risk single nucleotide polymorphisms (SNPs) were genotyped in individuals of European American (EA), African American (AA), American Indian (AI), and Mexican American (MA) ancestry in the Population Architecture using Genomics and Epidemiology (PAGE) study. In each individual study, we performed linear or logistic regression to examine population-specific associations between SNPs and ABI, common and internal cIMT, and plaque. The results from individual studies were meta-analyzed using a fixed effect inverse variance weighted model. Results None of the ten SNPs was significantly associated with ABI and common or internal cIMT, after Bonferroni correction. In the sample of 13,337 EA, 3,809 AA, and 5,353 AI individuals with carotid plaque measurement, the GCKR SNP rs780094 was significantly associated with the presence of plaque in AI only (OR = 1.32, 95% confidence interval: 1.17, 1.49, P = 1.08 × 10−5), but not in the other populations (P = 0.90 in EA and P = 0.99 in AA). A 9p21 region SNP, rs1333049, was nominally associated with plaque in EA (OR = 1.07, P = 0.02) and in AI (OR = 1.10, P = 0.05). Conclusions We identified a significant association between rs780094 and plaque in AI populations, which needs to be replicated in future studies. There was little evidence that the index CHD risk variants identified through genome-wide association studies in EA influence the development of CHD through subclinical atherosclerosis as assessed by cIMT and ABI across ancestries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.