The plant Perilla frutescens is widely employed in Asian medicine. The active components of Perilla include cyclic terpenes, which have a diverse range of antimicrobial, anticancer, sedative, and anti-inflammatory properties, hinting at a membrane-mediated mechanism of action. We have used molecular dynamics (MD) simulations and isothermal titration calorimetry (ITC) to investigate the interaction of four terpenes with model lipid bilayers. The ITC and MD data are mostly in accordance. The terpenes partition into membranes, pack along the lipid tails, and alter bilayer structure and dynamics. Three of the four molecules could cross the bilayer. The carboxylate-group-containing terpene modifies headgroup repulsion and increases the area per lipid by more than 10%, in a manner reminiscent of membrane-thinning peptides and solvents such as DMSO. Our results support the possibility that at least some medicinal properties of volatile Perilla extracts might arise from interactions with the lipid bilayer component of biological membranes.
Lipid II is critical for peptidoglycan synthesis, which is the main component of the bacterial cell wall. Lipid II is a relatively conserved and important part of the cell wall biosynthesis pathway and is targeted by antibiotics such as the lantibiotics, which achieve their function by disrupting the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes.
We have designed and synthesised a double-headed nucleotide that presents two nucleobases in the interior of a dsDNA duplex. This nucleotide recognises and forms Watson-Crick base pairs with two complementary adenosines in a Watson-Crick framework. Furthermore, with judicious positioning in complementary strands, the nucleotide recognises itself through the formation of a T:T base pair. Thus, two novel nucleic acid motifs can be defined by using our double-headed nucleotide. Both motifs were characterised by UV melting experiments, CD and NMR spectroscopy and molecular dynamics simulations. Both motifs leave the thermostability of the native dsDNA duplex largely unaltered. Molecular dynamics calculations showed that the double-headed nucleotides are accommodated in the dsDNA by entirely local perturbations and that the modified duplexes retain an overall B-type geometry with the dsDNA unwound by around 25 or 60°, respectively, in each of the modified motifs. Both motifs can be accommodated twice in a dsDNA duplex without incurring any loss of stability and extrapolating from this observation and the results of modelling, it is conceivable that both can be multiplied several times within a dsDNA duplex. These new motifs extend the DNA recognition repertoire and may form the basis for a complete series of double-headed nucleotides based on all 16 base combinations of the four natural nucleobases. In addition, both motifs can be used in the design of nanoscale DNA structures in which a specific duplex twist is required.
Cholesterol (Chol) and ergosterol (Erg) are abundant and important sterols in the plasma membrane of mammalian and yeast cells, respectively. The effects of Chol and Erg on membrane properties, as well as their intracellular transport, can be studied with use of fluorescence probes mimicking both sterols as closely as possible. In the search for new and efficient Chol and Erg probes, we use a combination of theoretical methods to explore a series of analogs. The optical properties of the analogs (i.e. excitation energies, emission energies and oscillator strengths) are examined using time-dependent density functional theory (TDDFT) and their ability to mimic the effects of Chol and Erg on membranes is investigated with molecular dynamics (MD) simulations of each analog in a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. From the set of analogs we find two probes (3a and 3b) to display favorable electronic transition properties as well as strong condensing abilities. These findings can lead to the use of new efficient probes and aid in the understanding of the structural features of Chol and Erg that impart to them their unique effects on lipid membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.