The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P. boisei may not have been an efficient producer of bite force and that robust morphology in primates is not necessarily strong. Here we use an engineering method, finite element analysis, to show that the facial skeleton of P. boisei is structurally strong, exhibits a strain pattern different from that in chimpanzees (Pan troglodytes) and Australopithecus africanus, and efficiently produces high bite force. It has been suggested that P. boisei consumed a diet of compliant/tough foods like grass blades and sedge pith. However, the blunt occlusal topography of this and other species suggests that australopiths are adapted to consume hard foods, perhaps including grass and sedge seeds. A consideration of evolutionary trends in morphology relating to feeding mechanics suggests that food processing behaviors in gracile australopiths evidently were disrupted by environmental change, perhaps contributing to the eventual evolution of Homo and Paranthropus.
Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.
Tooth profile plays an important role in interpretations of the functional morphology of extinct species. We tested hypotheses that australopith occlusal morphology influences the fracture force required to crack large, hard food items using a combination of physical testing and finite element analysis (FEA). We performed mechanical experiments simulating both molar and premolar biting using metal replicas of four hominin specimens representing species that differ in occlusal relief (Praeanthropus afarensis, Australopithecus africanus, Paranthropus robustus, and P. boisei). The replicas were inserted into an Instron machine and used to fracture hollow acrylic hemispheres with known material properties. These hemispheres simulate a hard and brittle food item but exhibit far less variability in size and strength than actual nuts or seeds, thereby facilitating interpretations of tooth function. Fracture forces and fracture displacements were measured, and analysis of variance revealed significant differences in fracture force and energy between specimens and tooth types. Complementing the physical testing, a nonlinear contact finite element model was developed to simulate each physical test. Experimental and FEA results showed good correspondence in most cases, and FEA identified stress concentrations consistent with mechanical models predicting that radial/median fractures are important factors in the failure of nut and seed shells. The fracture force data revealed functional similarities between relatively unworn Pr. afarensis and P. robustus teeth, and between relatively unworn A. africanus and heavily worn P. boisei teeth. These results are inconsistent with functional hypotheses, and raise the possibility that the tooth morphology of early hominins and other hard object feeders may not represent adaptations for inducing fractures in large, hard food items, but rather for resisting fractures in the tooth crown. Anat Rec,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.