Glyphosate tolerant genetically modified (GM) maize NK603 was assessed as ‘substantially equivalent’ to its isogenic counterpart by a nutrient composition analysis in order to be granted market approval. We have applied contemporary in depth molecular profiling methods of NK603 maize kernels (sprayed or unsprayed with Roundup) and the isogenic corn to reassess its substantial equivalence status. Proteome profiles of the maize kernels revealed alterations in the levels of enzymes of glycolysis and TCA cycle pathways, which were reflective of an imbalance in energy metabolism. Changes in proteins and metabolites of glutathione metabolism were indicative of increased oxidative stress. The most pronounced metabolome differences between NK603 and its isogenic counterpart consisted of an increase in polyamines including N-acetyl-cadaverine (2.9-fold), N-acetylputrescine (1.8-fold), putrescine (2.7-fold) and cadaverine (28-fold), which depending on context can be either protective or a cause of toxicity. Our molecular profiling results show that NK603 and its isogenic control are not substantially equivalent.
An agroecosystem is constrained by environmental possibility and social choices, mainly in the form of government policies. To be sustainable, an agroecosystem requires production systems that are resilient to natural stressors such as disease, pests, drought, wind and salinity, and to human constructed stressors such as economic cycles and trade barriers. The world is becoming increasingly reliant on concentrated exporting agroecosystems for staple crops, and vulnerable to national and local decisions that affect resilience of these production systems. We chronicle the history of the United States staple crop agroecosystem of the Midwest region to determine whether sustainability is part of its design, or could be a likely outcome of existing policies particularly on innovation and intellectual property. Relative to other food secure and exporting countries (e.g. Western Europe), the US agroecosystem is not exceptional in yields or conservative on environmental impact. This has not been a trade-off for sustainability, as annual fluctuations in maize yield alone dwarf the loss of caloric energy from extreme historic blights. We suggest strategies for innovation that are responsive to more stakeholders and build resilience into industrialized staple crop production.
Changing the nature, kind and quantity of particular regulatory-RNA molecules through genetic engineering can create biosafety risks. While some genetically modified organisms (GMOs) are intended to produce new regulatory-RNA molecules, these may also arise in other GMOs not intended to express them. To characterise, assess and then mitigate the potential adverse effects arising from changes to RNA requires changing current approaches to food or environmental risk assessments of GMOs. We document risk assessment advice offered to government regulators in Australia, New Zealand and Brazil during official risk evaluations of GM plants for use as human food or for release into the environment (whether for field trials or commercial release), how the regulator considered those risks, and what that experience teaches us about the GMO risk assessment framework. We also suggest improvements to the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.