Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and subarachnoid haemorrhage. However, the cellular origin and specific differential mechanisms are not clear yet. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading depression (CSD), a pathological mechanism of migraine.Here, we show that acute pharmacological activation of Na V 1.1 (the main Na + channel of interneurons) or optogenetic-induced hyperactivity of GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K + build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation. CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of CSD initiation. Gain-of-function mutations of NaV1.1 (SCN1A) cause Familial Hemiplegic Migraine type-3 (FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results provide the mechanism linking NaV1.1 gain-of-function to CSD generation in FHM3.Thus, we reveal the key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant as pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine and diseases in which SDs are involved.
Cortical spreading depression (CSD) is a wave of transient network hyperexcitability leading to long lasting depolarization and block of firing, which initiates focally and slowly propagates in the cerebral cortex. It causes migraine aura and it has been implicated in the generation of migraine headache. Cortical excitability can be modulated by cholinergic actions, leading in neocortical slices to the generation of rhythmic synchronous activities (UP/DOWN states). We investigated the effect of cholinergic activation with the cholinomimetic agonist carbachol on CSD triggered with 130mM KCl pulse injections in acute mouse neocortical brain slices, hypothesizing that the cholinergic-induced increase of cortical network excitability during UP states could facilitate CSD. We observed instead an inhibitory effect of cholinergic activation on both initiation and propagation of CSD, through the action of muscarinic receptors. In fact, carbachol-induced CSD inhibition was blocked by atropine or by the preferential M1 muscarinic antagonist telenzepine; the preferential M1 muscarinic agonist McN-A-343 inhibited CSD similarly to carbachol, and its effect was blocked by telenzepine. Recordings of spontaneous excitatory and inhibitory post-synaptic currents in pyramidal neurons showed that McN-A-343 induced overall a decrease of the excitatory/inhibitory ratio. This inhibitory action may be targeted for novel pharmacological approaches in the treatment of migraine with muscarinic agonists.
Cortical spreading depression (CSD) is a pathologic mechanism of migraine. We have identified a novel neocortex-specific mechanism of CSD initiation and a novel pathological role of GABAergic neurons.Mutations of the NaV1.1 sodium channel (the SCN1A gene), which is particularly important for GABAergic neurons' excitability, cause Familial Hemiplegic Migraine type-3 (FHM3), a subtype of migraine with aura. They induce gain-of-function of NaV1.1 and hyperexcitability of GABAergic interneurons in culture. However, the mechanism linking these dysfunctions to CSD and FHM3 has not been elucidated. Here, we show that NaV1.1 gain-of-function, induced by the specific activator Hm1a, or mimicked by optogenetic-induced hyperactivity of cortical GABAergic neurons, is sufficient to ignite CSD by spiking-generated extracellular K + build-up. This mechanism is neocortex specific because, with these approaches, CSD was not generated in other brain areas. GABAergic and glutamatergic synaptic transmission is not required for optogenetic CSD initiation, but glutamatergic transmission is implicated in CSD propagation. Thus, our results reveal the key role of hyper-activation of Nav1.1 and GABAergic neurons in a novel mechanism of CSD initiation, which is relevant for FHM3 and possibly also for other types of migraine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.