Previous studies have provided evidence that IL-15 expression within human tumors is crucial for optimal antitumor responses; however, the regulation of IL-15 within the tumor microenvironment (TME) is unclear. We report herein, in analyses of mice implanted with various tumor cell lines, soluble IL-15/IL-15Rα complexes (sIL-15 complexes) are abundant in the interstitial fluid of tumors with expression preceding the infiltration of tumor-infiltrating lymphocytes. Moreover, IL-15 as well as type I IFN, which regulates IL-15, was required for establishing normal numbers of CD8 T cells and natural killer cells in tumors. Depending on tumor type, both the tumor and the stroma are sources of sIL-15 complexes. In analyses of IL-15 reporter mice, most myeloid cells in the TME express IL-15 with CD11b+Ly6Chi cells being the most abundant, indicating there is a large source of IL-15 protein in tumors that lies sequestered within the tumor stroma. Despite the abundance of IL-15–expressing cells, the relative levels of sIL-15 complexes are low in advanced tumors but can be up-regulated by local stimulator of IFN genes (STING) activation. Furthermore, while treatment of tumors with STING agonists leads to tumor regression, optimal STING-mediated immunity and regression of distant secondary tumors required IL-15 expression. Overall, our study reveals the dynamic regulation of IL-15 in the TME and its importance in antitumor immunity. These findings provide insight into an unappreciated attribute of the tumor landscape that contributes to antitumor immunity, which can be manipulated therapeutically to enhance antitumor responses.
Induction of lymphopenia has been exploited therapeutically to improve immune responses to cancer therapies and vaccinations. Whereas IL-15 has well-established roles in stimulating lymphocyte responses after lymphodepletion, the mechanisms regulating these IL-15 responses are unclear. We report that cell surface IL-15 expression is upregulated during lymphopenia induced by total body irradiation (TBI), cyclophosphamide, or Thy1 Ab-mediated T cell depletion, as well as in RAG-/- mice; interestingly, the cellular profile of surface IL-15 expression is distinct in each model. In contrast, soluble(s) IL-15 complexes are upregulated only after TBI or αThy1Ab. Analysis of cell specific IL-15Rα conditional knock out mice revealed that macrophages and DCs are important sources of sIL-15 complexes after TBI but provide minimal contribution in response to Thy1 Ab treatment. Unlike with TBI, induction of sIL-15 complexes by αThy1 Ab is sustained and only partially dependent on type I Interferons. The Stimulator of IFN Genes (STING) pathway was discovered to be a potent inducer of sIL-15 complexes and was required for optimal production of sIL-15 complexes in response to Ab-mediated T cell depletion and TBI suggesting products of cell death drive production of sIL-15 complexes after lymphodepletion. Lastly, we provide evidence that IL-15 induced by inflammatory signals in response to lymphodepletion drives lymphocyte responses, as memory CD8 T cells proliferated in an IL-15-dependent manner. Overall, these studies demonstrate that the form in which IL-15 is expressed, it's kinetics and cellular sources, and the inflammatory signals involved are differentially dictated by the manner in which lymphopenia is induced.
NKTR-255 is a novel polyethylene glycol (PEG)-conjugate of recombinant human being examined as a potential cancer immunotherapeutic. Since IL-15 responses can be mediated by trans-or cis-presentation via IL-15Rα or soluble IL-15/IL-15Rα complexes, we investigated the role of IL-15Rα in driving NKTR-255 responses using defined naïve and memory ovalbumin-specific CD8 T cells (OT-I) CD8 T and NK cells in mice. NKTR-255 induced a 2.5 and 2.0-fold expansion of CD8 T and NK cells, respectively in WT mice. In adoptive transfer studies, proliferation of naïve and memory Wt OT-I T cells in response to NKTR-255 was not impaired in IL-15Rα −/− mice, suggesting trans-presentation was not utilized by NKTR-255. Interestingly, naïve IL-15Rα −/− OT-I cells had deficient responses to NKTR-255 while memory IL-15Rα −/− OT-I cell responses were partially impaired, suggesting that naive CD8 T cells are more dependent on cis-presentation of NKTR-255 than memory CD8 T cells. In bone marrow chimeras studies, IL-15Rα −/− and WT NK cells present in WT recipients had similar responses to NKTR-255, suggesting that cis-presentation is not utilized by NK cells. NKTR-255 could form soluble complexes with IL-15Rα; binding to murine IL-15Rα generated superagonists that preferentially stimulated NK cells showing that conversion to IL-15Rβ agonist biases the response towards NK cells. These findings highlight the ability of NKTR-255 to utilize IL-15Rα for cis-presentation and act as an IL-15Rαβ agonist on CD8 T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.