The coreid bug Thasus neocalifornicus Brailovsky and Barrera, commonly known as the giant mesquite bug, is a ubiquitous insect of the southwestern United States. Both nymphs and adults are often found aggregated on mesquite trees (Prosopis spp.: Fabaceae) feeding on seedpods and plant sap. We characterized the indigenous bacterial populations of nymphs and adults of this species by using molecular and phylogenetic techniques and culturing methods. Results show that this insect's bacterial gut community has a limited diversity dominated by Burkholderia associates. Phylogenetic analysis by using 16s rRNA sequences suggests that these β-Proteobacteria are closely related to those symbionts obtained from other heteropteran midgut microbial communities but not to Burkholderia symbionts associated with other insect orders. These bacteria were absent from the eggs and were not found in all younger nymphs, suggesting that they are acquired after the insects have hatched. Rearing experiments of nymphs with potentially Burkholderia contaminated soil suggested that if this symbiont is not acquired, giant mesquite bugs experience higher mortality. Egg, whole-body DNA extractions of younger nymphs, and midgut DNA extractions of fifth-instar nymphs and adults also revealed the presence of α-Proteobacteria from the Wolbachia genus. However, this bacterium was also present in reproductive organs of adults, indicating that this symbiont is not specific to the gut.
Traps designed to capture insects during normal movement/dispersal, or via attraction to non-specific (plant) volatile lures, yield by-catch that carries valuable information about patterns of community diversity and composition. In order to identify potential native/introduced pests and detect predictors of colonization of non-native pines, we examined beetle assemblages captured in intercept panel traps baited with kairomone lures used during a national monitoring of the woodwasp, Sirex noctilio, in Southern Africa. We identified 50 families and 436 morphospecies of beetles from nine sites sampled in both 2008 and 2009 and six areas in 2007 (trap catch pooled by region) across a latitudinal and elevational gradient. The most diverse groups were mainly those strongly associated with trees, known to include damaging pests. While native species dominated the samples in terms of richness, the dominant species was the introduced bark beetle Orthotomicus erosus (Curculionidae: Scolytinae) (22 ± 34 individuals/site). Four Scolytinae species without previous records in South Africa, namely Coccotrypes niger, Hypocryphalus robustus (formerly Hypocryphalus mangiferae), Hypothenemus birmanus and Xyleborus perforans, were captured in low abundances. Communities showed temporal stability within sites and strong biogeographic patterns across the landscape. The strongest single predictors of community composition were potential evaporation, latitude and maximum relative humidity, while the strongest multifactor model contained elevation, potential evaporation and maximum relative humidity. Temperature, land use variables and distance to natural areas did not significantly correlate with community composition. Non-phytophagous beetles were also captured and were highly diverse (32 families) perhaps representing important beneficial insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.