Organic acids in the atmosphere are ubiquitous and are often correlated with mineral dust aerosol. Heterogeneous chemistry and the uptake of organic acids on mineral dust particles can potentially alter the properties of the particle. In this study, heterogeneous uptake and reaction of formic acid, HCOOH, the most abundant carboxylic acid present in the atmosphere, on oxide and clays of the most abundant elements, Si and Al, present in the Earth's crust are investigated under dry and humid conditions. In particular, quantitative adsorption measurements using a Quartz Crystal Microbalance (QCM) coupled with spectroscopic studies using Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy are combined to allow for both quantification of the amount of uptake and identification of distinct adsorbed species formed on silica, alumina, and kaolinite particle surfaces at 298 K. These oxides and clay particles show significant differences in the extent and speciation of adsorbed HCOOH due to inherent differences in surface -OH group reactivity. Adsorbed water, controlled by relative humidity, can increase the irreversible uptake of formic acid. Interestingly, the resulting layer of adsorbed formate on the particle surface decreases the particle hydrophilicity thereby decreasing the amount of water taken up by the surface as measured by QCM. Atmospheric implications of this study are discussed.
Fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard release assay is based on the increase of the fluorescence signal from 5(6)-carboxyfluorescein dye when the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in the case of the MgSO4. The experiments also indicate that the magnetic nanoparticles generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.