Background and Objectives:A major concern of orthodontic patients is treatment time. Reducing the treatment time requires increasing the rate of orthodontic tooth movement. Research has proved that bone resorption is the rate-limiting step in tooth movement. Therefore, any procedure that potentiates osteoclastic activity is capable of increasing the rate of orthodontic tooth movement. Low-level laser has been indicated to have the capability to facilitate the differentiation of the osteoclastic and osteoblastic cells, which are responsible for the bone remodeling process. The purpose of this study was to evaluate whether the low-level laser therapy can accelerate orthodontic tooth movement during en masse retraction.Method:The study was a split-mouth design. The experimental side was exposed to biostimulation using 810 nm gallium-aluminium-arsenide diode laser. A total of 10 irradiations for 10 s per site were given 5 on the buccal side and 5 on the palatal side of the tooth. The total energy density at each application was 10 J with an interappointment gap of 3 weeks. The retraction was carried using a constant force of 150 gm. A digital vernier caliper measurement was used to measure the distance between the contact points of the maxillary canine and second premolar on 1st and 84th day.Results:The rate of orthodontic tooth movement was faster on the experimental side, and the difference between the two sides was statistically significant (P < 0.014).Interpretation and Conclusion:It was concluded that biostimulation carried out using an 810 nm diode laser is capable of increasing the rate of extraction space closure. Hence, it is capable of increasing the rate of orthodontic tooth movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.