Asphalt pavement distresses are the major concern of underdeveloped and developed nations for the smooth running of daily life commute. Among various pavement failures, numerous research can be found on pothole detection as they are injurious to automobiles and passengers that may turn into an accident. This work is intended to explore the potential of deep learning models and deploy three superlative deep learning models on edge devices for pothole detection. In this work, we have exploited the AI kit (OAK-D) on a single-board computer (Raspberry Pi) as an edge platform for pothole detection. Detailed real-time performance comparison of state-of-the-art deep learning models and object detection frameworks (YOLOv1, YOLOv2, YOLOv3, YOLOv4, Tiny-YOLOv4, YOLOv5, and SSD-mobilenetv2) for pothole detection is presented. The experimentation is performed on an image dataset with pothole in diverse road conditions and illumination variations as well as on real-time video captured through a moving vehicle. The Tiny-YOLOv4, YOLOv4, and YOLOv5 evince the highest mean average precision (mAP) of 80.04%, 85.48%, and 95%, respectively, on the image set, thus proving the strength of the proposed approach for pothole detection and deployed on OAK-D for real-time detection. The study corroborated Tiny-YOLOv4 as the befitted model for real-time pothole detection with 90% detection accuracy and 31.76 FPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.