The photophysical properties of m- and p-cyano N-phenylpyrrole (m- and p-PBN) are compared. Both compounds show highly red-shifted and strongly forbidden emission in polar solvents, assigned to a charge transfer state. The forbidden nature is indicative of very weak coupling between the two pi-systems, and a twisted emissive structure is suggested (TICT state). Comparison to quantum chemical calculations indicates that the twisted structure possesses an antiquinoid distortion of the benzonitrile group, i.e., the central bonds in the ring are lengthened instead of shortened. m-PBN is the first meta compound which shows a CT emission assignable to a TICT state. It differs from p-PBN by a less exergonic formation of the CT state from the LE/ICT quinoid state. Consequently, it shows only single LE/ICT fluorescence in nonpolar alkane solvents, whereas p-PBN shows dual fluorescence in this solvent (LE/ICT and TICT).
Poly(ethersulfone) (PES) membranes are widely used in industry for separation and purification purposes. However, the drawback of this type of membranes is fouling by proteins. For that reason, modification of PES membranes has been studied to enhance their protein repellence. This paper presents the first example of enzyme-catalyzed modification of PES membranes. Various phenolic acids (enzyme substrates) were bound to a membrane under very mild conditions (room temperature, water, nearly neutral pH) using only laccase from Trametes versicolor as catalyst. The extent of modification, monitored, for example, by the coloration of the modified membranes, can be tuned by adjusting the reaction conditions. The most significant results were obtained with 4-hydroxybenzoic acid and gallic acid as substrates. The presence of a covalently bound layer of 4-hydroxybenzoic acid on the grafted membranes was confirmed by X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRRAS), and NMR. In the case of gallic acid, PES membrane modification is mainly caused by adsorption of enzymatically formed homopolymer. The ionization potential of the substrates, and the electronic energies and spin densities of the radicals that are intermediates in the attachment reaction were calculated (B3LYP/6-311G(d,p)) to determine the reactive sites and the order of reactivity of radical substrates to couple with the PES membrane. The calculated order of reactivity of the substrates is in line with the experimental observations. The calculated spin densities in the phenolic radicals are highest at the oxygen atom, which is in line with the formation of ether linkages as observed by IRRAS. The liquid fluxes of the modified membranes are hardly influenced by the grafted layers, in spite of the presence of a substantial and stable new layer, which opens a range of application possibilities for these modified membranes.
a b s t r a c tThe photosynthetic minor antenna complex CP29 of higher plants was singly mutated, overexpressed in Escherichia coli, selectively labeled with the fluorescent dye TAMRA at three positions in the N-terminal domain, and reconstituted with its natural pigments. Picosecond fluorescence experiments revealed rapid excitation energy transfer ($20 ps) from TAMRA covalently attached to a cysteine at either position 4 or 97 (near the beginning and end of the N-terminal domain) to the chlorophylls in the hydrophobic part of the protein. This indicates that the N-terminus is folded back on the hydrophobic core. In 20% of the complexes, efficient transfer was lacking, indicating that the N-terminus can adopt different conformations. Time-resolved polarized fluorescence measurements demonstrate that the non-transferring conformations only allow restricted rotational motion of the dye molecule. When TAMRA was attached to a cysteine at position 40, the overall transfer efficiency was far lower, reflecting a larger distance to the hydrophobic region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.