Vibration-based damage detection techniques receive wide attention of the research community in recent years to overcome the limitations of conventional structural health monitoring methods. The modal parameters, namely, natural frequencies, mode shapes, transmissibility, frequency response function (FRF), and other damage sensitive features are usually employed to identify damage in a structure. The main objective of this review is to generate a detailed understanding of FRF-based techniques and to study their performance in terms of advantage, accuracy, and limitations in structural damage detection. This paper also reviews various approaches to develop methodologies in terms of efficiency and computational time. The study observed that excitation frequency, location of application of excitation, type of sensor, number of measurement locations, noise contamination in FRF data, selection of frequency range for simulation, weighting and numerical techniques to solve the over-determined set of equations influence the effectiveness of damage identification procedure. Limitations and future prospects have also been addressed in this paper. The content of this paper aims to guide researchers in developing formulations, updating models, and improving results in the field of FRF-based damage identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.