Machine learning is not a simple technology but an amazing field having more and more to explore. It has a number of real-time applications such as weather forecast, price prediction, gaming, medicine, fraud detection, etc. Machine learning has an increased usage in today's technological world as data is growing in volumes and machine learning is capable of producing mathematical and statistical models that can analyze complex data and generate accurate results. To analyze the scalable performance of the learning algorithms, this chapter utilizes various medical datasets from the UCI Machine Learning repository ranges from smaller to large datasets. The performance of learning algorithms such as naïve Bayes, decision tree, k-nearest neighbor, and stacking ensemble learning method are compared in different evaluation models using metrics such as accuracy, sensitivity, specificity, precision, and f-measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.