Abstract. The Kathmandu Valley in south Asia is considered as one of the global "hot spots" in terms of urban air pollution. It is facing severe air quality problems as a result of rapid urbanization and land use change, socioeconomic transformation, and high population growth. In this paper, we present the first full year (February 2013–January 2014) analysis of simultaneous measurements of two short-lived climate forcers/pollutants (SLCF/P), i.e., ozone (O3) and equivalent black carbon (hereinafter noted as BC) and aerosol number concentration at Paknajol, in the city center of Kathmandu. The diurnal behavior of equivalent BC and aerosol number concentration indicated that local pollution sources represent the major contributions to air pollution in this city. In addition to photochemistry, the planetary boundary layer (PBL) and wind play important roles in determining O3 variability, as suggested by the analysis of seasonal changes of the diurnal cycles and the correlation with meteorological parameters and aerosol properties. Especially during pre-monsoon, high values of O3 were found during the afternoon/evening. This could be related to mixing and entrainment processes between upper residual layers and the PBL. The high O3 concentrations, in particular during pre-monsoon, appeared well related to the impact of major open vegetation fires occurring at the regional scale. On a synoptic-scale perspective, westerly and regional atmospheric circulations appeared to be especially conducive for the occurrence of the high BC and O3 values. The very high values of SLCF/P, detected during the whole measurement period, indicated persisting adverse air quality conditions, dangerous for the health of over 3 million residents of the Kathmandu Valley, and the environment. Consequently, all of this information may be useful for implementing control measures to mitigate the occurrence of acute pollution levels in the Kathmandu Valley and surrounding area.
Meteorological effects on wintertime air pollution in the Kathmandu Valley were investigated using SOnic Detection and Ranging soundings, Automatic Weather Station measurements, numerical simulation using Weather Research and Forecasting data, and Chemical Transport Modeling during February 2013. A surrogate for black carbon was used for transport simulation in order to better understand the effects of local meteorological factors on air pollution. In the simulation, the emission strength of the black carbon surrogate was assumed temporally constant and spatially uniform over the Kathmandu Valley floor. The Weather Research and Forecasting simulation results were well correlated with observed meteorological measurements and demonstrated diurnal periodicity such as intrusion of westerly‐northwesterly wind into the Kathmandu Valley and modification of the boundary layer activity due to afternoon wind. The transport simulation suggested long‐lasting weak wind, thermally stable stratification, and associated small turbulence during the night and morning caused potentially severe air pollution. We propose a method using wind velocity and turbulent kinetic energy in the surface layer to characterize pollution level in the Kathmandu Valley.
Abstract. The Kathmandu Valley in South Asia is considered as one of the global "hot spots" in terms of urban air pollution. It is facing severe air quality problems as a result of rapid urbanization and land use change, socioeconomic transformation and high population growth. In this paper, we present the first full year (February 2013–January 2014) analysis of simultaneous measurements of two short-lived climate forcers/pollutants (SLCF/P), i.e. ozone (O3) and equivalent black carbon (hereinafter noted as BC) and aerosol number concentration at Paknajol, in the center of the Kathmandu metropolitan city. The diurnal behavior of equivalent black carbon (BC) and aerosol number concentration indicated that local pollution sources represent the major contributions to air pollution in this city. In addition to photochemistry, the planetary boundary layer (PBL) and wind play important roles in determining O3 variability, as suggested by the analysis of seasonal diurnal cycle and correlation with meteorological parameters and aerosol properties. Especially during pre-monsoon, high values of O3 were found during the afternoon/evening; this could be related to mixing and entrainment processes between upper residual layers and the PBL. The high O3 concentrations, in particular during pre-monsoon, appeared well related to the impact of major open vegetation fires occurring at regional scale. On a synoptic-scale perspective, westerly and regional atmospheric circulations appeared to be especially conducive for the occurrence of the high BC and O3 values. The very high values of SLCF/P, detected during the whole measurement period, indicated persisting adverse air quality conditions, dangerous for the health of over 3 million residents of the Kathmandu Valley, and the environment. Consequently, all of this information may be useful for implementing control measures to mitigate the occurrence of acute pollution levels in the Kathmandu Valley and surrounding area.
The characteristic behavior of prevailing boundary layer over the central area of the Kathmandu valley was continuously monitored by deploying a monostatic flat array sodar during the period of 03 to 16 March 2013. Diurnal variation of wind and mixing layer height were chosen to describe the boundary layer activities over the area by considering the day of 12 March 2013 as the representative day for the period of observation. The study shows that central area of the valley remains calm or windless under stable stratification throughout the night and early morning frequently capped by northeasterly or easterly wind aloft. Strong surface level thermal inversion prevails during the period up to the height of 80m above the surface. This inversion tends to lift up as the morning progresses and reaches to the height of 875 m or so close to the noontime. Intrusion of regional winds as westerly/northwesterly and the southerly/southwesterly from the western and southwestern low-mountain passes and the river gorge in the afternoon tends to reduce the noontime mixing layer height to about 700 m. The diurnal variation of wind and mixing layer height suggest that Kathmandu valley possesses a poor air pollution dispersion power and hence the valley is predisposed to high air pollution potential.Journal of Institute of Science and Technology, 2015, 20(1): 28-35
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.