Non-probabilistic approaches to decision making have been proposed for situations in which an individual does not have enough information to assess probabilities over an uncertainty. One non-probabilistic method is to use intervals in which an uncertainty has a minimum and maximum but nothing is assumed about the relative likelihood of any value within the interval. The Hurwicz decision rule in which a parameter trades off between pessimism and optimism generalizes the current rules for making decisions with intervals. This article analyzes the relationship between intervals based on the Hurwicz rule and traditional decision analysis using a few probability distributions and an exponential utility functions. This article shows that the Hurwicz decision rule for an interval is logically equivalent to: (i) an expected value decision with a triangle distribution over the interval; (ii) an expected value decision with a beta distribution; and (iii) an expected utility decision with constant absolute risk aversion with a uniform distribution. These probability distributions are not exhaustive. There are likely other distributions and utility functions for which equivalence with the Hurwicz decision rule can also be established. Since a frequent reason for the use intervals is that intervals assume less information than a probability distribution, the results in this article call into question whether decision making based on intervals really assumes less information than subjective expected utility decision making.Abstract Non-probabilistic approaches to decision making have been proposed for situations in which an individual does not have enough information to assess probabilities over an uncertainty. One nonprobabilistic method is to use intervals in which an uncertainty has a minimum and maximum but nothing is assumed about the relative likelihood of any value within the interval. The Hurwicz decision rule in which a parameter trades off between pessimism and optimism generalizes the current rules for making decisions with intervals. This article analyzes the relationship between intervals based on the Hurwicz rule and traditional decision analysis using a few probability distributions and an exponential utility functions.This article shows that the Hurwicz decision rule for an interval is logically equivalent to: (i) an expected value decision with a triangle distribution over the interval; (ii) an expected value decision with a beta distribution; and (iii) an expected utility decision with constant absolute risk aversion with a uniform distribution. These probability distributions are not exhaustive. There are likely other distributions and utility functions for which equivalence with the Hurwicz decision rule can also be established. Since a frequent reason for the use intervals is that intervals assume less information than a probability distribution, the results in this article call into question whether decision making based on intervals really assumes less information than subjective expected utility decisio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.