WW domain binding protein-2 (WBP-2) was cloned as an E6-associated protein interacting protein, and its role in steroid hormone receptors functions was investigated. We show that WBP-2 specifically enhanced the transactivation functions of progesterone receptor (PR) and estrogen receptor (ER), whereas it did not have any significant effect on the androgen receptor, glucocorticoid receptor, or the activation functions of p53 and VP-16. Depletion of endogenous WBP-2 with small interfering RNAs indicated that WBP-2 was required for the proper functioning of PR and ER. We also demonstrated that WBP-2 contains an intrinsic activation domain. Moreover, chromatin immunoprecipitation assays demonstrate the hormone-dependent recruitment of WBP-2 onto an estrogen-responsive promoter. Mutational analysis suggests that one of three polyproline (PY) motifs of WBP-2 is essential for its coactivation and intrinsic activation functions. We show that WBP-2 and E6-associated protein each enhance PR function, and their effect on PR action are additive when coexpressed, suggesting a common signaling pathway. In this study, we also demonstrate that the WBP-2 binding protein, Yes kinase-associated protein (YAP) enhances PR transactivation, but YAP's coactivation function is absolutely dependent on WBP-2. Taken together, our data establish the role of WBP-2 and YAP as coactivators for ER and PR transactivation pathways.
Eukaryotic transcription is one of the most complex cellular processes and constitutes the first step in protein synthesis. Ubiquitination and subsequent degradation by the 26 S proteasome, on the other hand, represents the final chapter in the life of a protein. Intriguingly, ubiquitin and the ubiquitin- proteasome system play vital roles in the regulation of transcription. Ubiquitin has dual modus operandi: firstly, ubiquitin functions via the 26 S proteasome--it is tagged to components of the transcription machinery, marking them for degradation via the proteasome, which results in the proper exchange of complexes during transcription and the prompt removal of activators after each round of transcription; and secondly, ubiquitin can function independently of the proteasome--histone ubiquitination results in heterochromatin relaxation and assembly of transcription complexes on the promoter, and ubiquitination of transcription factors enhances their transcriptional-activation function. Although ubiquitin and the ubiquitin-proteasome system were initially perceived as a graveyard for proteins, recent advances in molecular biological techniques have redefined their role as a regulatory system that influences the fate of many cellular processes, such as apoptosis, transcription and cell cycle progression.
E6-associated protein (E6-AP), which was originally identified as an ubiquitin-protein ligase, also functions as a coactivator of estrogen (ER-α) and progesterone (PR) receptors. To investigate the in vivo role of E6-AP in mammary gland development, we generated transgenic mouse lines that either overexpress wild-type (WT) human E6-AP (E6-AP(WT)) or ubiquitin-protein ligase-defective E6-AP (E6-AP(C833S)) in the mammary gland. Here we show that overexpression of E6-AP(WT) results in impaired mammary gland development. In contrast, overexpression of E6-AP(C833S) or loss of E6-AP (E6-AP(KO)) increases lateral branching and alveolus-like protuberances in the mammary gland. We also show that the mammary phenotypes observed in the E6-AP transgenic and knockout mice are due, in large part, to the alteration of PR-B protein levels. We also observed alteration in ER-α protein level, which might contribute to the observed mammary phenotype by regulating PR expression. Furthermore, E6-AP regulates PR-B protein levels via the ubiquitin-proteasome pathway. Additionally, we also show that E6-AP impairs progesterone-induced Wnt-4 expression by decreasing the steady state level of PR-B in both mice and in human breast cancer cells. In conclusion, we present the novel observation that E6-AP controls mammary gland development by regulating PR-B protein turnover via the ubiquitin proteasome pathway. For the first time, we show that the E3-ligase activity rather than the coactivation function of E6-AP plays an important role in the mammary gland development, and the ubiquitin-dependent PR-B degradation is not required for its transactivation functions. This mechanism appears to regulate normal mammogenesis, and dysregulation of this process may be an important contributor to mammary cancer development and progression.
Eukaryotic transcription is one of the most complex cellular processes and constitutes the first step in protein synthesis. Ubiquitination and subsequent degradation by the 26 S proteasome, on the other hand, represents the final chapter in the life of a protein. Intriguingly, ubiquitin and the ubiquitin- proteasome system play vital roles in the regulation of transcription. Ubiquitin has dual modus operandi: firstly, ubiquitin functions via the 26 S proteasome--it is tagged to components of the transcription machinery, marking them for degradation via the proteasome, which results in the proper exchange of complexes during transcription and the prompt removal of activators after each round of transcription; and secondly, ubiquitin can function independently of the proteasome--histone ubiquitination results in heterochromatin relaxation and assembly of transcription complexes on the promoter, and ubiquitination of transcription factors enhances their transcriptional-activation function. Although ubiquitin and the ubiquitin-proteasome system were initially perceived as a graveyard for proteins, recent advances in molecular biological techniques have redefined their role as a regulatory system that influences the fate of many cellular processes, such as apoptosis, transcription and cell cycle progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.