β-coronavirus (CoVs) alone has been responsible for three major global outbreaks in the 21st century. The current crisis has led to an urgent requirement to develop therapeutics. Even though a number of vaccines are available, alternative strategies targeting essential viral components are required as a backup against the emergence of lethal viral variants. One such target is the main protease (M pro ) that plays an indispensable role in viral replication. The availability of over 270 M pro X-ray structures in complex with inhibitors provides unique insights into ligand–protein interactions. Herein, we provide a comprehensive comparison of all nonredundant ligand-binding sites available for SARS-CoV2, SARS-CoV, and MERS-CoV M pro . Extensive adaptive sampling has been used to investigate structural conservation of ligand-binding sites using Markov state models (MSMs) and compare conformational dynamics employing convolutional variational auto-encoder-based deep learning. Our results indicate that not all ligand-binding sites are dynamically conserved despite high sequence and structural conservation across β-CoV homologs. This highlights the complexity in targeting all three M pro enzymes with a single pan inhibitor.
Glycosylation of secondary metabolites involves plant UDP-dependent glycosyltransferases (UGTs). UGTs have shown promise as catalysts in the synthesis of glycosides for medical treatment. However, limited understanding at the molecular level due to insufficient biochemical and structural information has hindered potential applications of most of these UGTs. In the absence of experimental crystal structures, we employed advanced molecular modelling and simulations in conjunction with biochemical characterisation to design a workflow to study five Group H Arabidopsis thaliana (76E1, 76E2, 76E4, 76E5, 76D1) UGTs. Based on our rational structural manipulation and analysis, we identified key amino acids (P129 in 76D1; D374 in 76E2; K275 in 76E4), which when mutated improved donor-substrate recognition than wildtype UGTs. Molecular dynamics simulations and deep learning analysis identified structural differences, which drive substrate preferences. The design of these UGTs with broader substrate specificity may play important role in biotechnological and industrial applications. These findings can also serve as basis to study other plant UGTs and thereby advancing UGT enzyme engineering.
The human islet amyloid polypeptide (hIAPP) or amylin is the major constituent of amyloidogenic aggregates found in pancreatic islets of type 2 diabetic patients that have been associated with β-cell dysfunction and/or death associated with type 2 diabetes mellitus (T2DM). Therefore, developing and/or identifying inhibitors of hIAPP aggregation pathway and/or compound that can mediate disaggregation of preformed aggregates holds promise as a medical intervention for T2DM management. In the current study, the anti-amyloidogenic potential of Azadirachtin (AZD)—a secondary metabolite isolated from traditional medicinal plant Neem (Azadirachta indica)—was investigated by using a combination of biophysical and cellular assays. Our results indicate that AZD supplementation not only inhibits hIAPP aggregation but also disaggregates pre-existing hIAPP fibrils by forming amorphous aggregates that are non-toxic to pancreatic β-cells. Furthermore, AZD supplementation in pancreatic β-cells (INS-1E) resulted in inhibition of oxidative stress; along with restoration of the DNA damage, lipid peroxidation and the associated membrane damage, endoplasmic reticulum stress and mitochondrial membrane potential. AZD treatment also restored glucose-stimulated insulin secretion from pancreatic islets exposed to hIAPP. All-atom molecular dynamics simulation studies on full-length hIAPP pentamer with AZD suggested that AZD interacted with four possible binding sites in the amyloidogenic region of hIAPP. In summary, our results suggest AZD to be a promising candidate for combating T2DM and related amyloidogenic disorders.
FtsZ monomers assemble to form a dynamic Z-ring at the midcell position in bacteria that coordinates bacterial cell division. Antibacterial agents plumbagin and SB-RA-2001 were found to bind to FtsZ and to inhibit Z-ring formation in bacteria. Docking analysis indicated similar binding regions for these two inhibitors on FtsZ, and residue R191 was involved in the binding interaction with both compounds. In this work, the importance of R191 in FtsZ assembly and in bacterial cell division was analyzed. R191A-FtsZ exhibited significantly poorer polymerization ability. Further, the mutant FtsZ could poison the assembly of wild-type FtsZ (WT-FtsZ). The expression of R191A-FtsZ in Bacillus subtilis strain PL2084 perturbed Z-ring formation and produced filamentous cells, indicating that the mutation hindered the division of these cells. The results suggested that the R191A mutation is a dominant negative mutation of FtsZ. Molecular dynamics simulations of R191A-FtsZ and WT-FtsZ revealed a kink in helices H5 and H7 in the active site of R191A-FtsZ compared to that of WT-FtsZ, which is required for FtsZ assembly. The findings suggested that R191 is an important residue for FtsZ assembly, which can be targeted for the design of FtsZ inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.