The vicious cycle between hyperinsulinemia and insulin resistance results in the progression of atherosclerosis in the vessel wall. The complex interaction between hyperglycemia and lipoprotein abnormalities promotes the development of atherogenesis. In the early phase of atherosclerosis, macrophage‐derived foam cells play an important role in vascular remodeling. Mechanistic target of rapamycin (mTOR) signaling pathway has been identified to play an essential role in the initiation, progression, and complication of atherosclerosis. Recently sestrin2, an antioxidant, was shown to modulate TOR activity and thereby regulating glucose and lipid metabolism. But the role of sestrin2 in monocyte activation is still not clearly understood. Hence, this study is focussed on investigating the role of sestrin2 in monocyte activation under hyperglycemic and dyslipidemic conditions. High‐glucose and oxidized low‐density lipoprotein (LDL) treatments mediated proinflammatory cytokine production (M1) with a concomitant decrease in the anti‐inflammatory cytokine (M2) levels in human monocytic THP1 cells. Both glucose and oxidized LDL (OxLDL) in a dose and time‐dependent manner increased the mTOR activation with a marked reduction in the levels of pAMPK and sestrin2 expression. Both high‐glucose and OxLDL treatment increased foam cell formation and adhesion of THP1 cells to endothelial cells. Experiments employing activator or inhibitor of adenosine monophosphate kinase (AMPK) as well as overexpression or silencing of sestrin2 indicated that high‐glucose mediated monocyte polarization and adhesion of monocytes to the endothelial cells were appeared to be programmed via sestrin2‐AMPK‐mTOR nexus. Our results evidently suggest that sestrin2 plays a major role in regulating monocyte activation via the AMPK–mTOR‐pathway under diabetic and dyslipidemic conditions and also AMPK regulates sestrin2 in a feedback mechanism.
We previously reported that the circulatory level of Asymmetric dimethylarginine (ADMA), an endogenous competitive inhibitor of nitric oxide synthase, was increased in diabetic kidney disease patients. However, the mechanism and the role of ADMA in diabetic kidney injury remain unclear. Hence, our principal aim is to investigate the causal role of ADMA in the progression of renal cell fibrosis under high glucose (HG) treatment and to delineate its signaling alterations in kidney cell injury. High Glucose/ADMA significantly increased fibrotic events including cell migration, invasion and proliferation along with fibrotic markers in the renal cells; whereas ADMA inhibition reversed the renal cell fibrosis. To delineate the central role of ADMA induced fibrotic signaling pathway and its downstream signaling, we analysed the expression levels of fibrotic markers, NOX4, ROS and ERK activity by using specific inhibitors and genetic manipulation techniques. ADMA stimulated the ROS generation along with a significant increase in NOX4 and ERK activity. Further, we observed that ADMA activated NOX-4 and ERK are involved in the extracellular matrix proteins accumulation. Also, we observed that ADMA induced ERK1/2 phosphorylation was decreased after NOX4 silencing. Our study mechanistically demonstrates that ADMA is involved in the progression of kidney cell injury under high glucose condition by targeting coordinated complex mechanisms involving the NOX4- ROS-ERK pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.