Background
The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020.
Methods
We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US$, 2020 US$ per capita, purchasing-power parity-adjusted US$ per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050.
Findings
In 2019, health spending globally reached $8·8 trillion (95% uncertainty interval [UI] 8·7–8·8) or $1132 (1119–1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, $40·4 billion (0·5%, 95% UI 0·5–0·5) was development assistance for health provided to low-income and middle-income countries, which made up 24·6% (UI 24·0–25·1) of total spending in low-income countries. We estimate that $54·8 billion in development assistance for health was disbursed in 2020. Of this, $13·7 billion was targeted toward the COVID-19 health response. $12·3 billion was newly committed and $1·4 billion was repurposed from existing health projects. $3·1 billion (22·4%) of the funds focused on country-level coordination and $2·4 billion (17·9%) was for supply chain and logistics. Only $714·4 million (7·7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34·3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to $1519 (1448–1591) per person in 2050, although spending across countries is expected to remain varied.
Interpretatio...
Purpose
This study aimed to evaluate the presence of CRISPR-Cas system genes and their possible association with antibiotic resistance patterns of
Enterococcus faecalis
and
Enterococcus faecium
species isolated from hospital wastewater (HWW) samples of several hospitals.
Methods
HWW samples (200 mL) were collected from wastewater discharged from different hospitals from October 2020 to March 2021. The isolation and identification of enterococci species were performed by standard bacteriology tests and polymerase chain reaction (PCR). Antibiotic resistance was determined using the disc diffusion. The presence of various CRISPR-Cas systems was investigated by PCR. The association of the occurrence of CRISPR-Cas systems with antibiotic resistance was analyzed with appropriate statistical tests.
Results
In total, 85 different enterococci species were isolated and identified using phenotypic methods. The results of PCR confirmed the prevalence of 50 (58.8%)
E. faecalis
and 35 (41.2%)
E. faecium
, respectively. In total, 54 (63.5%) of 85 isolates showed the presence of CRISPR-Cas loci. The incidence of CRISPR-Cas was more common in
E. faecalis
. CRISPR1, CRISPR2, and CRISPR3 were present in 35 (41.2%), 47 (55.3%), and 30 (35.3%) enterococci isolates, respectively. The CRISPR-Cas positive isolates showed significant lower resistance rates against vancomycin, ampicillin, chloramphenicol, erythromycin, rifampin, teicoplanin, tetracycline, imipenem, tigecycline, and trimethoprim-sulfamethoxazole in comparison with CRISPR-Cas negative isolates. The results showed that the presence of CRISPR-Cas genes was lower in multidrug-resistant (MDR) isolates (53.1%, n = 26/49) compared to the non-MDR enterococci isolates (77.8%, n = 28/36) (
P
= 0.023).
Conclusion
This study revealed the higher prevalence of
E. faecalis
than
E. faecium
in HWWs. Also, the lack of CRISPR-Cas genes was associated with more antibiotic resistance rates and multidrug resistance in
E. faecalis
and
E. faecium
isolates with HWW origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.