Rapid improvements in ultrasound imaging technology have made it much more useful for screening and diagnosing breast problems. Local-speckle-noise destruction in ultrasound breast images may impair image quality and impact observation and diagnosis. It is crucial to remove localized noise from images. In the article, we have used the hybrid deep learning technique to remove local speckle noise from breast ultrasound images. The contrast of ultrasound breast images was first improved using logarithmic and exponential transforms, and then guided filter algorithms were used to enhance the details of the glandular ultrasound breast images. In order to finish the pre-processing of ultrasound breast images and enhance image clarity, spatial high-pass filtering algorithms were used to remove the extreme sharpening. In order to remove local speckle noise without sacrificing the image edges, edge-sensitive terms were eventually added to the Logical-Pool Recurrent Neural Network (LPRNN). The mean square error and false recognition rate both fell below 1.1% at the hundredth training iteration, showing that the LPRNN had been properly trained. Ultrasound images that have had local speckle noise destroyed had signal-to-noise ratios (SNRs) greater than 65 dB, peak SNR ratios larger than 70 dB, edge preservation index values greater than the experimental threshold of 0.48, and quick destruction times. The time required to destroy local speckle noise is low, edge information is preserved, and image features are brought into sharp focus.
Every year, cervical cancer is a leading cause of mortality in women all over the world. This cancer can be cured if it is detected early and patients are treated promptly. This study proposes a new strategy for the detection of cervical cancer using cervigram pictures. The associated histogram equalization (AHE) technique is used to improve the edges of the cervical image, and then the finite ridgelet transform is used to generate a multi-resolution picture. Then, from this converted multi-resolution cervical picture, features such as ridgelets, gray-level run-length matrices, moment invariant, and enhanced local ternary pattern are retrieved. A feed-forward backward propagation neural network is used to train and test these extracted features in order to classify the cervical images as normal or abnormal. To detect and segment cancer regions, morphological procedures are applied to the abnormal cervical images. The cervical cancer detection system’s performance metrics include 98.11% sensitivity, 98.97% specificity, 99.19% accuracy, a PPV of 98.88%, an NPV of 91.91%, an LPR of 141.02%, an LNR of 0.0836, 98.13% precision, 97.15% FPs, and 90.89% FNs. The simulation outcomes show that the proposed method is better at detecting and segmenting cervical cancer than the traditional methods.
Diabetic retinopathy (DR) and adult vitelliform macular dystrophy (AVMD) may cause significant vision impairment or blindness. Prompt diagnosis is essential for patient health. Photographic ophthalmoscopy checks retinal health quickly, painlessly, and easily. It is a frequent eye test. Ophthalmoscopy images of these two illnesses are challenging to analyse since early indications are typically absent. We propose a deep learning strategy called ActiveLearn to address these concerns. This approach relies heavily on the ActiveLearn Transformer as its central structure. Furthermore, transfer learning strategies that are able to strengthen the low-level features of the model and data augmentation strategies to balance the data are incorporated owing to the peculiarities of medical pictures, such as their limited quantity and generally rigid structure. On the benchmark dataset, the suggested technique is shown to perform better than state-of-the-art methods in both binary and multiclass accuracy classification tasks with scores of 97.9% and 97.1%, respectively.
To improve the accuracy of tumor identification, it is necessary to develop a reliable automated diagnostic method. In order to precisely categorize brain tumors, researchers developed a variety of segmentation algorithms. Segmentation of brain images is generally recognized as one of the most challenging tasks in medical image processing. In this article, a novel automated detection and classification method was proposed. The proposed approach consisted of many phases, including pre-processing MRI images, segmenting images, extracting features, and classifying images. During the pre-processing portion of an MRI scan, an adaptive filter was utilized to eliminate background noise. For feature extraction, the local-binary grey level co-occurrence matrix (LBGLCM) was used, and for image segmentation, enhanced fuzzy c-means clustering (EFCMC) was used. After extracting the scan features, we used a deep learning model to classify MRI images into two groups: glioma and normal. The classifications were created using a convolutional recurrent neural network (CRNN). The proposed technique improved brain image classification from a defined input dataset. MRI scans from the REMBRANDT dataset, which consisted of 620 testing and 2480 training sets, were used for the research. The data demonstrate that the newly proposed method outperformed its predecessors. The proposed CRNN strategy was compared against BP, U-Net, and ResNet, which are three of the most prevalent classification approaches currently being used. For brain tumor classification, the proposed system outcomes were 98.17% accuracy, 91.34% specificity, and 98.79% sensitivity.
Objective:The Glioma brain tumor detection and segmentation methods are proposed in this paper using machine learning approaches. Methods:The boundary edge pixels are detected using Kirsch’s edge detectors and then contrast adaptive histogram equalization method is applied on the edge detected pixels. Then, Ridgelet transform is applied on this enhanced brain image in order to obtain the Ridgelet multi resolution coefficients. Further, features are derived from the Ridgelet transformed coefficients and the features are optimized using Principal Component Analysis (PCA) method and these optimized features are classified into Glioma or non-Glioma brain images using Co-Active Adaptive Neuro Fuzzy Expert System (CANFES) classifier.Results:The proposed method with PCA and CANFES classification approach obtains 97.6% of se, 98.56% of sp, 98.73% of Acc, 98.85% of Pr, 98.11% of FPR and 98.185 of FNR, then the proposed Glioma brain tumor detection method using CANFES classification approach only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.