In this paper we first review the development of high order ADER finite volume and ADER discontinuous Galerkin schemes on fixed and moving meshes, since their introduction in 1999 by Toro et al. We show the modern variant of ADER based on a space-time predictor-corrector formulation in the context of ADER discontinuous Galerkin schemes with a posteriori subcell finite volume limiter on fixed and moving grids, as well as on space-time adaptive Cartesian AMR meshes. We then present and discuss the unified symmetric hyperbolic and thermodynamically compatible (SHTC) formulation of continuum mechanics developed by Godunov, Peshkov and Romenski (GPR model), which allows to describe fluid and solid mechanics in one single and unified first order hyperbolic system. In order to deal with free surface and moving boundary problems, a simple diffuse interface approach is employed, which is compatible with Eulerian schemes on fixed grids as well as direct Arbitrary-Lagrangian-Eulerian methods on moving meshes. We show some examples of moving boundary problems in fluid and solid mechanics.
In this article we propose a new family of high order staggered semi-implicit discontinuous Galerkin (DG) methods for the simulation of natural convection problems. Assuming small temperature fluctuations, the Boussinesq approximation is valid and in this case the flow can simply be modeled by the incompressible Navier-Stokes equations coupled with a transport equation for the temperature and a buoyancy source term in the momentum equation. Our numerical scheme is developed starting from the work presented in [1,2,3], in which the spatial domain is discretized using a face-based staggered unstructured mesh. The pressure and temperature variables are defined on the primal simplex elements, while the velocity is assigned to the dual grid. For the computation of the advection and diffusion terms, two different algorithms are presented: i) a purely Eulerian explicit upwind-type scheme and ii) a semi-Lagrangian approach. The first methodology leads to a conservative scheme whose major drawback is the time step restriction imposed by the CFL stability condition due to the explicit discretization of the convective terms. On the contrary, computational efficiency can be notably improved relying on a semi-Lagrangian approach in which the Lagrangian trajectories of the flow are tracked back. This method leads to an unconditionally stable scheme if the diffusive terms are discretized implicitly. Once the advection and diffusion contributions have been computed, the pressure Poisson equation is solved and the velocity is updated. As a second model for the computation of buoyancy-driven flows, in this paper we also consider the full compressible Navier-Stokes equations. The staggered semi-implicit DG method first proposed in [4] for all Mach number flows is properly extended to account for the gravity source terms arising in the momentum and energy conservation laws. In order to assess the validity and the robustness of our novel class of staggered semi-implicit DG schemes, several classical benchmark problems are considered, showing in all cases a good agreement with available numerical reference data. Furthermore, a detailed comparison between the incompressible and the compressible solver is presented. Finally, advantages and disadvantages of the Eulerian and the semi-Lagrangian methods for the discretization of the nonlinear convective terms are carefully studied.
In this paper we propose a new reformulation of the first order hyperbolic model for unsteady turbulent shallow water flows recently proposed in Gavrilyuk et al. (J Comput Phys 366:252–280, 2018). The novelty of the formulation forwarded here is the use of a new evolution variable that guarantees the trace of the discrete Reynolds stress tensor to be always non-negative. The mathematical model is particularly challenging because one important subset of evolution equations is nonconservative and the nonconservative products also act across genuinely nonlinear fields. Therefore, in this paper we first consider a thermodynamically compatible viscous extension of the model that is necessary to define a proper vanishing viscosity limit of the inviscid model and that is absolutely fundamental for the subsequent construction of a thermodynamically compatible numerical scheme. We then introduce two different, but related, families of numerical methods for its solution. The first scheme is a provably thermodynamically compatible semi-discrete finite volume scheme that makes direct use of the Godunov form of the equations and can therefore be called a discrete Godunov formalism. The new method mimics the underlying continuous viscous system exactly at the semi-discrete level and is thus consistent with the conservation of total energy, with the entropy inequality and with the vanishing viscosity limit of the model. The second scheme is a general purpose high order path-conservative ADER discontinuous Galerkin finite element method with a posteriori subcell finite volume limiter that can be applied to the inviscid as well as to the viscous form of the model. Both schemes have in common that they make use of path integrals to define the jump terms at the element interfaces. The different numerical methods are applied to the inviscid system and are compared with each other and with the scheme proposed in Gavrilyuk et al. (2018) on the example of three Riemann problems. Moreover, we make the comparison with a fully resolved solution of the underlying viscous system with small viscosity parameter (vanishing viscosity limit). In all cases an excellent agreement between the different schemes is achieved. We furthermore show numerical convergence rates of ADER-DG schemes up to sixth order in space and time and also present two challenging test problems for the model where we also compare with available experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.