A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady‐state performances in terms of [μC*] and current retentions up to 98% over 700 electrochemical switching cycles are developed.
Conjugated polymers exhibit electrically driven volume changes when included in electrochemical devices via the exchange of ions and solvent. So far, this volumetric change is limited to 40% and 100% for reversible and irreversible systems, respectively, thus restricting potential applications of this technology. A conjugated polymer that reversibly expands by about 300% upon addressing, relative to its previous contracted state, while the first irreversible actuation can achieve values ranging from 1000–10 000%, depending on the voltage applied is reported. From experimental and theoretical studies, it is found that this large and reversible volumetric switching is due to reorganization of the polymer during swelling as it transforms between a solid‐state phase and a gel, while maintaining percolation for conductivity. The polymer is utilized as an electroactive cladding to reduce the void sizes of a porous carbon filter electrode by 85%.
Theoretical understanding of the electronic structure and optical transitions in n-doped conducting polymers is still controversial for polaronic and bipolaronic states and is completely missing for the case of a high doping level. In the present paper, the electronic structure and optical properties of the archetypical n-doped conducting polymer, doublestranded benzimidazo-benzophenanthroline ladder (BBL) are studied using the density functional theory (DFT) and time-dependent (TD) DFT method. We nd that a polaronic state in the BBL chain is a spin-resolved doublet where the spin-degeneracy is lifted. The ground state of two electrons corresponds to a triplet polaron pair, which is in stark contrast to a commonly accepted picture where two electrons are postulated to form a spinless bipolaron. The total spin gradually increases until the reduction level reaches c red = 100% (i.e. one electron per monomer unit). With further increase of the reduction level, the total spin decreases until it becomes 0 for the reduction level c red = 200%. The calculated results reproduce the experimentally observed spin signal without any phenomenological parameters. A detailed analysis of the evolution of the electronic structure of BBL and its absorption spectra with increase in reduction level are presented. The calculated UV-vis-NIR spectra are compared with the available experimental results. The electronic structure and optical absorption for dierent reduction levels presented here are generic to a wide class of conducting polymers, which is illustrated by the corresponding calculations for another archetypical conducting polymer, poly(3,4-ethylenedioxythiophene) (best known as PEDOT).
Electrochemically induced volume changes in organic mixed ionic‐electronic conductors (OMIECs) are particularly important for their use in dynamic microfiltration systems, biomedical machinery, and electronic devices. Although significant advances have been made to maximize the dimensional changes that can be accomplished by OMIECs, there is currently limited understanding of how changes in their molecular structures impact their underpinning fundamental processes and their performance in electronic devices. Herein, a series of ethylene glycol functionalized conjugated polymers is synthesized, and their electromechanical properties are evaluated through a combined approach of experimental measurements and molecular dynamics simulations. As demonstrated, alterations in the molecular structure of OMIECs impact numerous processes occurring during their electrochemical swelling, with sidechain length shortening decreasing the number of incorporated water molecules, reducing the generated void volumes and promoting the OMIECs to undergo different phase transitions. Ultimately, the impact of these combined molecular processes is assessed in organic electrochemical transistors, revealing that careful balancing of these phenomena is required to maximize device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.