NDT methods applicable to concrete bridges are reviewed. The methodology, advantages and disadvantages along with up to date research on NDT methods are presented. Different damage levels, having less dependence on inspector judgment, are suggested. Moreover, a flow chart based on damage level along with NDT methods and potential remedial measures are proposed for periodic health monitoring of structures. NDT methods are also suggested to address specific problems related to structures. Finally, the relation between some of the well-known NDT methods and most common problems encountered by the field engineers is proposed. Hence, the importance of structural health monitoring is highlighted. Original language EnglishPages (from-to) 58-86
Abstract:The rheological properties of fresh cement paste with different content of graphene nanoplatelets (GNPs), different shear rate cycles and resting time was investigated. The rheological data were fitted by the Bingham model, Modified Bingham model, Herschel-Bulkley model and Casson model to estimate the yield stress and plastic viscosity, and to see trend of the flow curves. The effectiveness of these rheological models was expressed by the standard error. Test results showed that yield stress and plastic viscosity increased with the increase in the content of graphene in the cement based composite and resting time while the values of these parameters decreased for higher shear rate cycle. In comparison to control sample, the GNP cement based composite showed 30% increase in load carrying capacity and 73% increase in overall failure strain. Piezo-resistive characteristics of GNP were employed to evaluate the self-sensing composite material. It was found that, at maximum compressive load, the electrical resistivity value reduced by 42% and hence GNP cement based composite can be used to detect the damages in concrete. Finally, the practical application of this composite material was evaluated by testing full length reinforced concrete beam. It was found that graphene-cement composite specimen successfully predicted the response against cracks propagation and hence can be used as self-sensing composite material.
The complication linked with the prediction of the ultimate capacity of concrete-filled steel tubes (CFST) short circular columns reveals a need for conducting an in-depth structural behavioral analyses of this member subjected to axial-load only. The distinguishing feature of gene expression programming (GEP) has been utilized for establishing a prediction model for the axial behavior of long CFST. The proposed equation correlates the ultimate axial capacity of long circular CFST with depth, thickness, yield strength of steel, the compressive strength of concrete and the length of the CFST, without need for conducting any expensive and laborious experiments. A comprehensive CFST short circular column under an axial load was obtained from extensive literature to build the proposed models, and subsequently implemented for verification purposes. This model consists of extensive database literature and is comprised of 227 data samples. External validations were carried out using several statistical criteria recommended by researchers. The developed GEP model demonstrated superior performance to the available design methods for AS5100.6, EC4, AISC, BS, DBJ and AIJ design codes. The proposed design equations can be reliably used for pre-design purposes—or may be used as a fast check for deterministic solutions.
Carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) belong to the family of graphite nanomaterials (GNMs) and are promising candidates for enhancing properties of cementitious matrix. However, the problem lies with their improper dispersion. In this paper graphite nanoplatelets are used with carbon nanotubes for dispersion facilitation of CNTs in cement mortar. The intended role is to use the GNPs particles for dispersion of CNTs and to investigate the synergistic effect of resulting nano-intruded mortar. Mechanical properties such as flexure and compressive strength have been studied along with volumetric stability, rheology, and workability. Varying dosages of CNTs to GNPs have been formulated and were analyzed. The hybrid use of CNTs-GNPs shows promise. Scanning electron microscopy reveals that hybrid CNTs/GNPs are well-suited for use in cement mortar composite performing a dual function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.