Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.
A strain-hardening cementitious composite (SHCC) is a modern engineered material offering exceptional ductility and durability. A potential application of SHCCs for crack control and to improve structural members’ load-bearing capabilities is due to its superior properties. In this study, SHCCs were used to enhance the load-carrying capacity and the cracking behavior of precast RC beams. In the bottom tension region of RC beams, the SHCCs of different layer thicknesses (0%, 15%, 30%, and 45% of section height) were cast. Laboratory-scale beams were used in 4-point bending tests. SHCC-layered RC beams showed improved flexural performance compared to control RC beams. Among retrofitted beams, the one with an SHCC layer of 30% of the section height was found to be the most efficient pertaining to strength, ductility, and cracking control. In this study, the flexural response of composite beams was also predicted using an analytical approach. The average difference between predicted and measured moment capacities was less than 10%.
Strain-hardening cementitious composites (SHCC) are advanced type of cement-based composite materials having superior crack control and tensile properties. Owing to such characteristics, SHCC can be used for strengthening and crack-width control of structural members. This paper presents a study on the flexural response of reinforced concrete (RC) beams with different overlays of SHCC. The work consists of RC-SHCC overlay beams, in which SHCC overlays of different thicknesses (15% and 30% of beam height, plus cover) and reinforcement ratios (0% and 0.4%) were cast at the bottom of the RC beams. The performance of the RC-SHCC overlay beams was compared with control RC beams having concrete overlays of similar parameters. A series of eight laboratory-scale control and composite beam specimens were tested under four-point bending test. From the experimental results, it was observed that RC-SHCC overlay beams showed improved flexural capacity and crack control as compared to that of control beams. The beams with unreinforced SHCC overlays showed significant improvement at service stage, while beams with reinforced SHCC overlays showed significant improvement at peak stage. The SHCC overlay beams without reinforcement have showed improved ductility as compared to control beams with concrete overlays. Additionally, the SHCC overlays performed as a protective layer for controlling the crack widths in the composite beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.