We construct scalarized wormholes with a NUT charge in higher curvature theories. We consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following Brihaye, Herdeiro and Radu, who recently studied spontaneously scalarised Schwarzschild-NUT solutions. By varying the coupling parameter and the scalar charge we determine the domain of existence of the scalarized nutty wormholes, and their dependence on the NUT charge. In the Gauss-Bonnet case the known set of scalarized wormholes is reached in the limit of vanishing NUT charge. In the Chern-Simons case, however, the limit is peculiar, since with vanishing NUT charge the coupling constant diverges. We focus on scalarized nutty wormholes with a single throat and study their properties. All these scalarized nutty wormholes feature a critical polar angle, beyond which closed timelike curves are present.
We present wormholes with a Newman-Unti-Tamburino (NUT) charge that arise in certain higher curvature theories, where a scalar field is coupled to a higher curvature invariant. For the invariants we employ i) a Gauss-Bonnet term and ii) a Chern-Simons term, which then act as source terms for the scalar field. We map out the domain of existence of wormhole solutions by varying the coupling parameter and the scalar charge for a set of fixed values of the NUT charge. The domain of existence for a given NUT charge is then delimited by the set of scalarized nutty black holes, a set of wormhole solutions with a degenerate throat and a set of singular solutions.
We present wormholes with a Newman–Unti–Tamburino (NUT) charge that arise in certain higher curvature theories, where a scalar field is coupled to a higher curvature invariant. For the invariants we employ (i) a Gauss–Bonnet term and (ii) a Chern–Simons term, which then act as source terms for the scalar field. We map out the domain of existence of wormhole solutions by varying the coupling parameter and the scalar charge for a set of fixed values of the NUT charge. The domain of existence for a given NUT charge is then delimited by the set of scalarized nutty black holes, a set of wormhole solutions with a degenerate throat and a set of singular solutions.
We construct scalarized wormholes with a NUT charge in higher curvature theories. We consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following a recent paper by Brihaye et al. [1], where spontaneously scalarised Schwarzschild-NUT solutions were studied. By varying the coupling parameter and the scalar charge we determine the domain of existence of the scalarized nutty wormholes, and their dependence on the NUT charge. In the Gauss-Bonnet case the known set of scalarized wormholes [2] is reached in the limit of vanishing NUT charge. In the Chern-Simons case, however, the limit is peculiar, since with vanishing NUT charge the coupling constant diverges. We focus on scalarized nutty wormholes with a single throat and study their properties. All these scalarized nutty wormholes feature a critical polar angle, beyond which closed timelike curves are present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.