Vitamin C (VC) is an essential supplement that plays an important role in cellular processes and functions and has been applied for therapeutic purposes for many years. Recently, the bene cial effects of VC on peripheral nerve regeneration have been gained lots of attention. In this study, electrospun polycaprolactone (PCL)/polyglycerol sebacate (PGS) bers incorporated with different concentrations of VC (5, 10, and 15 wt.%) were developed for peripheral nerve tissue engineering. The morphology of the bers was investigated using scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), tensile analysis (Young's modulus, ultimate tensile strength (UTS), and elongation at break), release pro le of VC from the PCL/PGS bers, in vitro degradation, water uptake behavior, and contact angle measurements were also studied. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and SEM were utilized to evaluate the attachment and viability of pheochromocytoma cells (PC12) on the scaffolds. The results showed that all scaffolds had a uniform diameter and mean diameter deceased from 1.24 to 0.88 µm followed by increasing VC. Young's modulus and UTS enhanced with increasing in VC percentage. Contact angle analysis showed that VC increased the surface hydrophilicity of PCL/PGS bers from 31.4º to 13.6º. MTT assays demonstrated that PCL/PGS containing 5 wt.% VC have a greater viability rate among other scaffolds. Our outcome indicated possible applicability of VC containing scaffolds for nerve tissue engineering.
Damage to the skin makes the body vulnerable to microorganisms; wound dressings with desirable properties such as antibacterial activity is used in order to accelerate the healing of the injury. An available natural substance investigated for its antibacterial property is honey; also, zinc-oxide nanoparticles (ZnO-NPs) have shown great antibacterial activities. This study investigated some properties of PU-Gel nanofibrous membranes, loaded with honey and ZnO-NPs, including antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis, mechanical properties and cell proliferation. The results indicate that PU/Gel/ZnO and PU/Gel/ZnO/H are suitable in inhibiting bacterial growth compared with PU/Gel/H and control membranes. Moreover, PU/Gel/H membranes had considerable antibacterial effect on E-coli. The addition of ZnO-NPs improved the mechanical properties. Cell culture studies (MTT test) proved the biocompatibility of the developed nanofibrous membranes. The obtained nanofibrous membrane PU/Gel/ZnO/H is a promising candidate for the development of improved bandage materials.
Limitations in liver transplantation and advances in cell therapy methods motivated us to study primary hepatocytes. The main challenge in using primary hepatocytes for liver regeneration is that they lose their functionalities. We aimed to develop a controlled-shape hydrogel and apply the conditioned-media of mesenchymal stromal cells (CM-MSCs) to improve in vitro hepatocyte functions. In this experimental study, following rat hepatocyte isolation by collagenase perfusion and collection of human umbilical cord CM-MSCs, a simple and precise system called electrodeposition was used to produce the patterned alginate hydrogel. To reduce the cytopathic effects, we used an indirect electrodeposition method. For characterizing this structure, mechanical properties, Fourier-transform infrared spectroscopy (FTIR), water uptake, in-vitro degradation, and hydrogel stability were studied. Urea synthesis as a basic function of hepatocytes was assessed in five different groups. Scanning electron microscope (SEM) was utilized to evaluate the primary hepatocyte morphology and their dispersion in the fabricated structure. We observed a significant increase in urea synthesis in the presence of CM-MSCs in patterned hydrogel alginate compared to 2D culture on day 3 ( p<0.05). However, there was no significant difference in simple and patterned hydrogel on day 2. We found that the electrodeposition method is appropriate for the rapid fabricating of hydrogel structures with arbitrary patterns for 3D cell culture.
Stem cells provided new opportunity to treat various diseases, including liver disorders. Stem cells are unspecialized cells, stimulating influential research interest be indebted to their multipotent self-renewal capacity and differentiation characteristics into several specialized cell types. Many factors contribute to their differentiation into different cell types such as insulin producing cells, osteoblast, and hepatocytes. Accordingly, wide range methods and materials have been used to transform stem cells into hepatocytes, but effectiveness of differentiation is different and depends on several factors such as cell-to-cell adhesion, cell-to-cell contact, and cell biological change. Search was done in PubMed, Scopus, and WOS to evaluate results of studies about stem cells differentiation for higher efficacy. Among more than 28000 papers, 51 studies were considered eligible for more evaluations. Results indicated that most studies were performed on mesenchymal stem cells compared with other types. Acute liver failure was the most investigated liver disorder, and tissue engineering was the most investigated differentiation methods. Also, functional parameters were the most evaluated parameters in assessing differentiation efficacy. We summarize recent advances in increasing efficiency of stem cells differentiation using varied materials, since promising results of this review, further studies are needed to assess efficiency and safety of these cells transplantation in some liver disease treatment.
Vitamin C (VC) is an essential supplement that plays an important role in cellular processes and functions and has been applied for therapeutic purposes for many years. Recently, the beneficial effects of VC on peripheral nerve regeneration have been gained lots of attention. In this study, electrospun polycaprolactone (PCL)/polyglycerol sebacate (PGS) fibers incorporated with different concentrations of VC (5, 10, and 15 wt.%) were developed for peripheral nerve tissue engineering. The morphology of the fibers was investigated using scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), tensile analysis (Young’s modulus, ultimate tensile strength (UTS), and elongation at break), release profile of VC from the PCL/PGS fibers, in vitro degradation, water uptake behavior, and contact angle measurements were also studied. 3-(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and SEM were utilized to evaluate the attachment and viability of pheochromocytoma cells (PC12) on the scaffolds. The results showed that all scaffolds had a uniform diameter and mean diameter deceased from 1.24 to 0.88 µm followed by increasing VC. Young’s modulus and UTS enhanced with increasing in VC percentage. Contact angle analysis showed that VC increased the surface hydrophilicity of PCL/PGS fibers from 31.4º to 13.6º. MTT assays demonstrated that PCL/PGS containing 5 wt.% VC have a greater viability rate among other scaffolds. Our outcome indicated possible applicability of VC containing scaffolds for nerve tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.