A high sensitive electroanalytical-based sensor for determination of isoprenaline was fabricated by modification of carbon paste electrode (CPE) by NiO-Pt-Pd/CNTs composite as conductive mediator and n-hexyl-3-methylimidazolium hexafluoro phosphate (NHIHP) as conductive binder. The NHIHP/NiO-Pt-Pd/CNTs/CPE was improved the oxidation signal of isoprenaline ⁓3.47 times and reduced oxidation overpotential of drug ⁓180 mV. The pH investigation confirmed that redox behavior of isoprenaline is depended of pH solution with equal value of electron and proton in redox mechanism. The NHIHP/NiO-Pt-Pd/CNTs/CPE was successfully used for determination of isoprenaline in the concertation range 0.003-300 µM with detection limit 0.9 nM by square wave voltammetric method. The standard addition results showed powerful ability of NHIHP/NiO-Pt-Pd/CNTs/CPE as an electroanalytical tool for determination of isoprenaline in the pharmaceutical and clinical samples with recovery data 98.76-105.06%. KEYWORDSIsoprenaline; NiO-based composite; nanostructure sensor; modified carbon paste electrode; drug sensor.
A highly sensitive and selective modified electrode was successfully developed for the monitoring of nicotinamide adenine dinucleotide (NADH) in the presence of folic acid. In this regard, a carbon paste electrode (CPE) was functionalized by the nitrogen-doped carbon quantum dots/tin oxide (N-CQDs/SnO2) nanocomposite and 1-butyl-2,3-dimethyl imidazolium hexafluorophosphate ([C4DMIM][PF6]) ionic liquid (IL). The structure and surface morphology of the nanocomposite were characterized by various methods, including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). The modified electrode displayed powerful and long-lasting electron mediating activity, with well-separated NADH and folic acid oxidation peaks. The sensing response of the developed [C4DMIM][PF6]/N-CQDs/SnO2/CPE platform was evaluated by determining NADH via the voltammetric technique under the optimized operating conditions. The current peaks of the square wave voltammograms of NADH and folic acid increased linearly with enhancing its concentrations within the ranges of 0.003 - 275 µM NADH and 0.4 - 380 µM folic acid. The detection limits for NADH and folic acid were obtained at 0.8 nM and 0.1 µM, respectively. Interference species such as glucose, urea, tryptophan, glycine, methionine, and vitamin B12 had no influence on the ability of the fabricated modified electrode to detect the target species. The low detection limit, high sensitivity, excellent selectivity, superior stability, and cost-effectiveness made it suitable for the quantification of NADH in the real biological samples with the recovery percent values in the range of 97.5 - 103%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.