Abstract-After the incredible success of deep learning in the computer vision domain, there has been much interest in applying Convolutional Network (ConvNet) features in robotic fields such as visual navigation and SLAM. Unfortunately, there are fundamental differences and challenges involved. Computer vision datasets are very different in character to robotic camera data, real-time performance is essential, and performance priorities can be different. This paper comprehensively evaluates and compares the utility of three state-of-the-art ConvNets on the problems of particular relevance to navigation for robots; viewpoint-invariance and condition-invariance, and for the first time enables real-time place recognition performance using ConvNets with large maps by integrating a variety of existing (locality-sensitive hashing) and novel (semantic search space partitioning) optimization techniques. We present extensive experiments on four real world datasets cultivated to evaluate each of the specific challenges in place recognition. The results demonstrate that speed-ups of two orders of magnitude can be achieved with minimal accuracy degradation, enabling real-time performance. We confirm that networks trained for semantic place categorization also perform better at (specific) place recognition when faced with severe appearance changes and provide a reference for which networks and layers are optimal for different aspects of the place recognition problem.
The system does not require any task-specific or sitespecific training. It uses an off-the-shelf pre-trained con-
A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graphembedding framework. We show that by introducing withinclass and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels. * Acknowledgements: NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy, as well as the Australian Research Council through the ICT Centre of Excellence program. The second and third authors contributed equally. We thank Prof. Terry Caelli for useful discussions.
Representing 3D shape in deep learning frameworks in an accurate, efficient and compact manner still remains an open challenge. Most existing work addresses this issue by employing voxel-based representations. While these approaches benefit greatly from advances in computer vision by generalizing 2D convolutions to the 3D setting, they also have several considerable drawbacks. The computational complexity of voxel-encodings grows cubically with the resolution thus limiting such representations to low-resolution 3D reconstruction. In an attempt to solve this problem, point cloud representations have been proposed. Although point clouds are more efficient than voxel representations as they only cover surfaces rather than volumes, they do not encode detailed geometric information about relationships between points. In this paper we propose a method to learn free-form deformations (Ffd) for the task of 3D reconstruction from a single image. By learning to deform points sampled from a high-quality mesh, our trained model can be used to produce arbitrarily dense point clouds or meshes with fine-grained geometry. We evaluate our proposed framework on both synthetic and real-world data and achieve state-of-the-art results on point-cloud and volumetric metrics. Additionally, we qualitatively demonstrate its applicability to label transferring for 3D semantic segmentation. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.