During the casting of ferromanganese alloys from electric arc furnaces into sand beds at temperatures of up to 1800°C a considerable amount of very brown fumes are generated when the alloy fume is oxidized in the atmosphere. The fume is difficult to capture because of the large flux of gas that is generated. Possible reasons for this flux include the high evaporation rate of Mn at elevated temperatures, the large surface area of the casting beds and the large thermal plumes over the furnace tapholes and casting beds. It has been found that the use of fine water sprays along the edge of the roof that covers the casting bed resulted in a significant reduction in visible emissions. This paper describes research into the kinetics of the fume to improve the design of the capture hoods, as well as the mechanism of suppression by the water sprays by using CFD analysis. It is shown that the oxidation reaction produces less than 20% of the energy content of the plume over the arc furnace taphole, and also that radiation heat transfer may play an important role in increasing the energy content of the taphole plume. The capture of fume particles by fine spray droplets is shown to have limited efficiency, while the heat sink that is caused by evaporation does not materially contribute to the circulation of fume through the spray. It is postulated that the increased moisture content of the air over the casting beds may be instrumental in reducing the oxygen partial pressure or in the formation of an oxide layer, both of which would reduce metal evaporation and, therefore fume formation. The exact mechanism requires further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.