Human–Computer Interfaces (HCI) deals with the study of interface between humans and computers. The use of radar and other RF sensors to develop HCI based on Hand Gesture Recognition (HGR) has gained increasing attention over the past decade. Today, devices have built-in radars for recognizing and categorizing hand movements. In this article, we present the first ever review related to HGR using radar sensors. We review the available techniques for multi-domain hand gestures data representation for different signal processing and deep-learning-based HGR algorithms. We classify the radars used for HGR as pulsed and continuous-wave radars, and both the hardware and the algorithmic details of each category is presented in detail. Quantitative and qualitative analysis of ongoing trends related to radar-based HCI, and available radar hardware and algorithms is also presented. At the end, developed devices and applications based on gesture-recognition through radar are discussed. Limitations, future aspects and research directions related to this field are also discussed.
Antimicrobial resistance (AMR) is emerging as a potential threat to many lives worldwide. It is very important to understand and apply effective strategies to counter the impact of AMR and its mutation from a medical treatment point of view. The intersection of artificial intelligence (AI), especially deep learning/machine learning, has led to a new direction in antimicrobial identification. Furthermore, presently, the availability of huge amounts of data from multiple sources has made it more effective to use these artificial intelligence techniques to identify interesting insights into AMR genes such as new genes, mutations, drug identification, conditions favorable to spread, and so on. Therefore, this paper presents a review of state-of-the-art challenges and opportunities. These include interesting input features posing challenges in use, state-of-the-art deep-learning/machine-learning models for robustness and high accuracy, challenges, and prospects to apply these techniques for practical purposes. The paper concludes with the encouragement to apply AI to the AMR sector with the intention of practical diagnosis and treatment, since presently most studies are at early stages with minimal application in the practice of diagnosis and treatment of disease.
Physical fatigue can be assessed using heart rate variability (HRV). We measured HRV at rest and in a fatigued state using impulse-radio ultra wideband (IR-UWB) radar in a noncontact fashion and compared the measurements with those obtained using electrocardiography (ECG) to assess the reliability and validity of the radar measurements. HRV was measured in 15 subjects using radar and ECG simultaneously before (rest for 10 min before exercise) and after a 20-min exercise session (fatigue level 1 for 0–9 min; fatigue level 2 for 10–19 min; recovery for ≥ 20 min after exercise). HRV was analysed in the frequency domain, including the low-frequency component (LF), high-frequency component (HF) and LF/HF ratio. The LF/HF ratio measured using radar highly agreed with that measured using ECG during rest (ICC = 0.807), fatigue-1 (ICC = 0.712), fatigue-2 (ICC = 0.741) and recovery (ICC = 0.764) in analyses using intraclass correlation coefficients (ICCs). The change pattern in the LH/HF ratios during the experiment was similar between radar and ECG. The subject’s body fat percentage was linearly associated with the time to recovery from physical fatigue (R2 = 0.96, p < 0.001). Our results demonstrated that fatigue and rest states can be distinguished accurately based on HRV measurements using IR-UWB radar in a noncontact fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.