Organic selenocyanates (RSeCN) are among the most reactive and biologically active Se species, often exhibiting a pronounced cytotoxic activity against mammalian cells and microorganisms. Various aromatic selenocyanates have been synthesized and, similar to some of the most Reactive Sulfur Species (RSS), such as allicin, found to be active against a range of bacteria, including Escherichia coli, Pseudomonas syringae and Micrococcus luteus, and fungi, including Verticillium dahlia, Verticillium longisporum, Alternaria brassicicola, and Botrytis cinerea, even via the gas phase. The highest antimicrobial activity has been observed for benzyl selenocyanate, which inhibited the growth of all bacteria considerably, even at the lowest tested concentration of 50 µM. Notably, neither the analogues thiocyanate (BTC) nor isothiocyanate (BITC) show any of these activities, rendering this selenium motif rather special in activity and mode of action. Eventually, these findings advocate a range of potential applications of organic selenocyanates in medicine and agriculture.
Background: Allicin from garlic is known for different medical uses for centuries. One important explanation for these effects is the chemical reactivity of allicin as a thiosulfinate towards thiol-groups and the modification of thiol-groups by thioallylation. Objective: It has been shown that thioallylation can inhibit the enzymatic function of proteins. In different organisms, the thioallylated proteins upon allicin treatment have been examined. It was found, especially in human T-cell lymphocytes (Jurkat-cells), that the glycolysis is a major target for allicin. Here, we briefly discuss that affecting the primary metabolism is a possible part of allicin’s physiological functions and might be, both from therapeutic and nutraceutical view, of particular interest for the application of allicin as an active principle of freshly damaged garlic. Conclusion: This might, in summary, explain a possible further mode of action of allicin on cells by changing the metabolism as the central life process and thus influencing the overall structure of the physiological processes in the cell, which can lead to the multitude of consequences caused by allicin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.