Brain derived neurotrophic factor (BDNF) has been suggested to be involved in epileptogenesis. Both pro- and antiepileptogenic effects have been reported, but the exact physiological role is still unclear. Here, we investigated the role of endogenous BDNF in epileptogenesis by using transgenic mice overexpressing truncated trkB, a dominant negative receptor of BDNF. After induction of status epilepticus (SE) by kainic acid, the development of spontaneous seizures was monitored by video-EEG system. Hilar cell loss, and the number of neuropeptide Y immunoreactive cells were studied as markers of cellular damage, and mossy fibre sprouting was investigated as a plasticity marker. Our results show that transgenic mice had significantly less frequent interictal spiking than wild-type mice, and the frequency of spontaneous seizures was lower. Furthermore, compared to wild-type animals, transgenic mice had less severe seizures with later onset and mortality was lower. In contrast, no differences between genotypes were observed in any of the cellular or plasticity markers. Our results suggest that transgenic mice with decreased BDNF signalling have reduced epileptogenesis.
Brain-derived neurotrophic factor (BDNF) regulates neuronal survival, differentiation and plasticity. It has been shown to promote epileptogenesis and transgenic mice with decreased and increased BDNF signaling show opposite alterations in epileptogenesis. However, the mechanisms of BDNF action are largely unknown. We studied the gene expression changes 12 days after kainic acid-induced status epilepticus in transgenic mice overexpressing either the functional BDNF receptor trkB or a dominant-negative truncated trkB. Epileptogenesis produced marked changes in expression of 27 of 1090 genes. Cluster analysis revealed BDNF signalling-mediated regulation of functional gene classes involved in cellular transport, DNA repair and cell death, including kinesin motor kinesin family member 3A involved in cellular transport. Furthermore, the expression of cytoskeletal and extracellular matrix components, such as tissue inhibitor of metalloproteinase 2 was altered, emphasizing the importance of intracellular transport and interplay between neurons and glia during epileptogenesis. Finally, mice overexpressing the dominant-negative trkB, which were previously shown to have reduced epileptogenesis, showed a decrease in mRNAs of several growth-associated genes, including growth-associated protein 43. Our data suggest that BDNF signaling may partly mediate the development of epilepsy and propose that regrowth or repair processes initiated by status epilepticus and promoted by BDNF signaling may not be as advantageous as previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.