Sickle cell disease (SCD) is caused by a point mutation in the beta-globin gene. SCD is characterized by chronic hemolytic anemia, vaso-occlusive events leading to tissue ischemia, and progressive organ failure. Chronic inflammatory state is part of the pathophysiology of SCD. Patients with SCD have extremely variable phenotypes, from mild disease to severe complications including early age death. The spleen is commonly injured in SCD. Early splenic dysfunction and progressive spleen atrophy are common. Splenomegaly and hypersplenism can also occur with the loss of the crucial splenic function. Acute, life-threatening spleen-related complications in SCD are well studied. The association of laboratory parameters with the spleen status including hyposplenism, asplenia, and splenomegaly/hypersplenism, and their implication in vaso-occlusive crisis and long-term complications in SCD remain to be determined. We evaluated the association between the spleen status with clinical and laboratory parameters in 31 SCD patients: Group a) Patients with asplenia/hyposplenism (N = 22) (including auto-splenectomy and splenectomized patients) vs. Group b) patients with splenomegaly and or hypersplenism (N = 9). Laboratory studies included: Complete Blood Count, reticulocyte count, iron metabolism parameters, C Reactive Protein (CRP), Hb variant distribution, and D-dimer. Metabolic and morphological red blood cell (RBC) studies included: density gradient (by Percoll), glucose consumption, lactate release, and K+ leakage, fetal RBC (F-Cells) and F-Reticulocytes, annexinV+, CD71+, oxidative stress measured by GSH presence in RBC and finally Howell Jolly Bodies count were all analyzed by Flow Cytometry. Scanning electron microscopy analysis of RBC was also performed. Patients with asplenia/hyposplenism showed significantly higher WBC, platelet, Hematocrit, hemoglobin S, CRP, D-dimer, Gamma Glutamyl Transferase (GGT), cholesterol, transferrin, annexin V+ RBCs, CD71+ RBCs, together with a markedly lower F Reticulocyte levels in comparison with splenomegaly/hypersplenism patients. In summary, important differences were also found between the groups in the studied RBCs parameters. Further studies are required to elucidate the effect of the spleen including hyper and hypo-splenia on laboratory parameters and in clinical manifestations, vascular pathology, and long-term complications of SCD. The benefits and risks of splenectomy compared to chronic transfusion need to be evaluated in clinical trials and the standard approach managing hypersplenism in SCD patients should be re-evaluated.
Introduction: The commonly used method for hematocrit detection, by visual examination of microcapillary tube, known as "micro-HCT", is subjective but still remains one of the key sources for false hematocrit evaluation. Analytical automation techniques have increased standardization of RBC indexes detection; however, indirect hematocrit measurements by blood analyzer, the automated HCT, does not correlate well with "micro-HCT" results in patients with hematological pathologies. We aimed to overcome those disadvantages in "micro-HCT" analysis by using "ImageJ", processing software. Methods: 223 blood samples from the "general population" and 19 from sickle cell disease patients were examined in parallel for hematocrit values using the automated HCT, standard "micro-HCT" and "ImageJ" micro-HCT methods. Results: For the "general population" samples, the "ImageJ" values were significantly higher than the corresponding values evaluated by standard "micro-HCT" and automated HCT, except for the 0 to 2 months old newborns, in which the automated HCT results were similar to the "ImageJ" evaluated HCT. Similar to the "general population" cohort, we found significantly higher values measured by "ImageJ" compared to either "micro-HCT" or the automated HCT in SCD patients. Correspondent differences for the MCV and MCHC were also found. Conclusions: This study introduces "micro-HCT" assessment technique using the image-analysis module of "ImageJ" software. This procedure allows overcoming most of the data errors associated with the standard "micro-HCT" evaluation and can replace the use of complicated and expensive automated equipment. The presented results may be also used to develop new standards for calculations of hematocrit and associated parameters for routine clinical practice.
Background: Background:Sickle cell disease (SCD) is caused by a point mutation in the beta globin gene. SCD is characterized by chronic hemolytic anemia, vaso-occlusive events leading to tissue ischemia and progressive organ failure. A chronic inflammatory state is part of the pathophysiology of SCD. Patients with SCD have extremely variable phenotypes, from a mild disease to severe complications including early age death.The spleen is commonly injured in SCD. Early splenic dysfunction and progressive spleen atrophy are common. Splenomegaly and hypersplenism, can also occur with loss of the crucial splenic function. Acute, life-threatening spleen-related complications in SCD are well studied. The implications of the spleen status including asplenia and splenomegaly/ hypersplenism in vaso-occlusive crisis and long-term complications in SCD remain to be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.