This study was aimed to analyze neutral detergent insoluble crude protein (NDICP) and acid detergent insoluble crude protein (ADICP) contents of various commonly used forage and concentrate feedstuffs in Indonesia. A number of forages and concentrates, i.e. gliricidia, trichantera, indigofera, calliandra, papaya leaves, cassava leaves, leucaena, rapeseed meal, corn gluten feed, soybean meal, copra meal, palm kernel meal, fish and bone meal and wheat bran were subjected to proximate analysis, cell wall nitrogen determination and in vitro rumen fermentation evaluation. Chemical composition analysis was done in duplicate. The in vitro incubation was conducted in 14 treatments and 3 replicates by following a randomized complete block design. Variables measured after the incubation were total volatile fatty acid (VFA), ammonia, dry matter digestibility (DMD), organic matter digestibility (OMD) and crude protein digestibility (CPD). Results revealed that among the forages, cassava leaf had the highest proportion of NDICP while corn gluten feed was the highest among the concentrates. Different from that of NDICP, the highest proportion of ADICP was obtained in papaya leaf and copra meal for the forages and concentrates, respectively. Higher proportion of NDICP tended to decrease CPD (P<0.1). Although higher ADICP apparently tended to decrease CPD as well, the relationship was insignificant due to the higher variation of the dependent variable. It was concluded that cell wall protein proportion in feed may be used as an indicator to determine the quality of protein and its utilization in the rumen.
This experiment aimed to determine nutrient content, protein fraction, and in vitro rumen fermentation of some alternative beans in comparison to soybean. Samples used were napier grass, soybean, redbean, groundnut, pigeonpea, cowpea, bambarabean, and mungbean. Samples were determined for their proximate composition, Van Soest's fiber fraction, and Cornell protein fraction. The samples were subsequently evaluated for their fermentation characteristics and digestibility by using a two-stage in vitro rumen fermentation technique, maintained at 39 o C for 2 × 48 h. The in vitro incubation was performed in three consecutive runs by following a randomized complete block design in which each sample per run was represented by four fermentation tubes. Results revealed that all experimental beans contained high crude protein (CP), i.e. above 200 g/kg dry matter (DM), but only soybean and groundnut had CP contents higher than 300 g/kg DM. Redbean had the lowest crude fiber and acid detergent fiber contents among the beans. Soybean contained high proportion of rapidly degraded CP fraction, but low in slowly degraded and unavailable CP fractions. High proportion of slowly degraded CP fraction was found in redbean and bambarabean. Redbean, pigeonpea, cowpea, and mungbean were better than soybean, groundnut, and bambarabean with regard to DM degradability and DM digestibility values (P<0.05). Concentration of total VFA was the highest in the incubation of redbean. It was concluded that groundnut, redbean, pigeonpea, cowpea, and mungbean have the potency to be used to substitute soybean for ruminant feeding. ABSTRAKPenelitian ini bertujuan untuk menentukan kandungan nutrien, fraksi protein, dan fermentasi rumen in vitro dari sejumlah kacang-kacangan alternatif kacang kedelai sebagai pakan ternak ruminansia. Bahan pakan yang digunakan dalam penelitian ini adalah rumput gajah, kacang kedelai, kacang merah, kacang tanah, kacang gude, kacang tunggak, kacang bogor, dan kacang hijau. Analisis komposisi proksimat, fraksi serat Van Soest, dan fraksi protein Cornell dilakukan pada bahan. Bahan kemudian dievaluasi secara in vitro dengan menggunakan teknik fermentasi rumen dua tahap pada suhu 39 o C selama 2 × 48 jam. Inkubasi in vitro dilakukan dalam tiga ulangan berdasarkan rancangan acak kelompok (masing-masing diwakili oleh empat tabung fermentasi). Hasil penelitian menunjukkan bahwa semua kacang-kacangan mengandung protein kasar (PK) yang tinggi, yakni lebih dari 200 g/kg bahan kering (BK), namun hanya kacang kedelai dan kacang tanah yang lebih tinggi dari 300 g/kg BK. Kacang merah memiliki kandungan serat kasar dan serat deterjen asam yang paling rendah di antara kacang-kacangan yang diuji. Kacang kedelai mengandung proporsi fraksi PK mudah terdegradasi yang tinggi, namun rendah fraksi yang lambat terdegradasi dan yang tidak tersedia. Fraksi PK lambat terdegradasi yang tinggi terdapat pada kacang merah dan kacang bogor. Kacang merah, kacang gude, kacang tunggak, dan kacang hijau memiliki degradasi dan kecernaan BK yang lebih tinggi ...
I ndonesia is currently the world largest producer of oil palm products especially in the form of crude palm oil. This is possible since total oil palm plantation area in Indonesia is the largest among other countries, i.e. 8,150,000 ha, followed by Malaysia (4,620,000 ha), Thailand (720,000 ha), Nigeria (440,000 ha), Colombia (354,000 ha) and others (Garcia-Nunez et al., 2016). Oil palm plantation, apart from its main products, also produces significant amount of residual biomass such as oil palm trunk, oil palm frond, oil palm empty fruit bunch (OPEFB), kernel shell, mesocarp fiber and palm oil mill effluent (POME). Production of palm oil is approximately 10% from total biomass and the remaining is regarded as residual biomass (Ooi et al., 2017). Further, considering conversion factors from Stichnothe and Schuchardt (2010), processing of 100 kg of fresh fruit bunch (FFB) would result 20 kg of crude palm oil and 23 kg of OPEFB. On dry matter basis, two thirds of oil palm residue is originated from oil palm trunk and oil palm frond whereas one third is derived from FFB processing residues (Sulaiman et al., 2010). Such huge amounts of oil palm residues indicate their potency to be used as animal feeds particularly for ruminants since these residues (except POME) generally contain high proportion of fiber (cellulose, hemicellulose and lignin) but low research Article Abstract | This experiment aimed to enhance nutritional quality of oil palm empty fruit bunch (OPEFB) by combining urea treatment and high temperature and pressure (135 o C, 2.3 atm) using fiber cracking technology (FCT). The OPEFB was subjected to the following treatments: T1 (untreated OPEFB), T2 (OPEFB + FCT), T3 (OPEFB + 1% urea + FCT), T4 (OPEFB + 2% urea + FCT), T5 (OPEFB + 3% urea + FCT), T6 (OPEFB + 4% urea + FCT) and T7 (OPEFB + 5% urea + FCT), each in four replicates. Samples were determined for neutral detergent fiber (NDF), acid detergent fiber (ADF) and lignin contents, and were incubated in vitro with rumen fluid and buffer mixture. Results showed that treatment using FCT (T2) decreased NDF, ADF, cellulose and lignin contents of OPEFB. Combination between FCT and 1-5% urea (T3-T7) further decreased the fiber fractions, and addition 5% urea + FCT (T7) resulted in the lowest NDF, ADF, cellulose and lignin contents of OPEFB. Such fiber decrease of OPEFB due to FCT and urea was accompanied with significant increase of in vitro total gas production, gas production rate, total volatile fatty acid, ammonia, in vitro dry matter digestibility and in vitro organic matter digestibility as compared to control (P<0.05). However, methane emission was unaltered by FCT and/or urea treatments.
This experiment aimed to evaluate the decrease of the fiber fraction of some agricultural and plantation residues after being treated with Fiber Cracking Technology (FCT) and urea. The residues included rice straw, oil palm frond (OPF), oil palm empty fruit bunch (OPEFB), cocoa pod and coffee husk. They were added with 5% urea and incubated in FCT at temperature 135 o C and pressure 2.3 atm for 2.5 h. The experimental treatments were arranged as a factorial design 5 × 2, in which the first factor was various agricultural and plantation residues (rice straw, OPF, OPEFB, cocoa pod and coffee husk) and the second factor was FCT application (untreated and treated with FCT + 5% urea), performed in 4 replicates. All treatments were subjected to Van Soest analysis and in vitro digestibility test. The decrease of fiber fraction was confirmed with Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) methods. Results showed that FCT + 5% urea treatment decreased NDF, ADF, cellulose and lignin contents of all samples (P<0.05), and increased IVDMD and IVOMD in comparison to untreated samples (P<0.05). However, the treatment did not alter in vitro methane gas production and VFA profiles of the samples. Analyses using SEM, XRD and FTIR revealed that FCT + 5% urea treatment demolished cell wall component, decreased crystallinity index and cleaved fiber bonds. It was concluded that combination between FCT and urea 5% effectively enhances the quality of some fibrous feed materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.