Language communication plays an important role in human learning and knowledge acquisition. With the emergence of a new generation of cognitive robots, empowering these robots to learn directly from human partners becomes increasingly important. This paper gives a brief introduction to interactive task learning where humans can teach physical agents new tasks through natural language communication and action demonstration. It discusses research challenges and opportunities in language and communication grounding that are critical in this process. It further highlights the importance of commonsense knowledge, particularly the very basic physical causality knowledge, in grounding language to perception and action.
Electroencephalography (EEG) is used in the diagnosis, monitoring, and prognostication of many neurological ailments including seizure, coma, sleep disorders, brain injury, and behavioral abnormalities. One of the primary challenges of EEG data is its sensitivity to a breadth of non-stationary noises caused by physiological-, movement-, and equipment-related artifacts. Existing solutions to artifact detection are deficient because they require experts to manually explore and annotate data for artifact segments. Existing solutions to artifact correction or removal are deficient because they assume that the incidence and specific characteristics of artifacts are similar across both subjects and tasks (i.e., “one-size-fits-all”). In this paper, we describe a novel EEG noise-reduction method that uses representation learning to perform patient- and task-specific artifact detection and correction. More specifically, our method extracts 58 clinically relevant features and applies an ensemble of unsupervised outlier detection algorithms to identify EEG artifacts that are unique to a given task and subject. The artifact segments are then passed to a deep encoder-decoder network for unsupervised artifact correction. We compared the performance of classification models trained with and without our method and observed a 10% relative improvement in performance when using our approach. Our method provides a flexible end-to-end unsupervised framework that can be applied to novel EEG data without the need for expert supervision and can be used for a variety of clinical decision tasks, including coma prognostication and degenerative illness detection. By making our method, code, and data publicly available, our work provides a tool that is of both immediate practical utility and may also serve as an important foundation for future efforts in this domain.
To enable language-based communication and collaboration with cognitive robots, this paper presents an approach where an agent can learn task models jointly from language instruction and visual demonstration using an And-Or Graph (AoG) representation. The learned AoG captures a hierarchical task structure where linguistic labels (for language communication) are grounded to corresponding state changes from the physical environment (for perception and action). Our empirical results on a cloth-folding domain have shown that, although state detection through visual processing is full of uncertainties and error prone, by a tight integration with language the agent is able to learn an effective AoG for task representation. The learned AoG can be further applied to infer and interpret ongoing actions from new visual demonstration using linguistic labels at different levels of granularity.
HighlightsAttention is not a Good Explanation
Explanation is an Interactive Communication ProcessWe introduce a new XAI framework based on Theory-of-Mind and counterfactual explanations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.