The bacterial populations associated with different plant and fungal habitats of intact Pinus sylvestris – Suillus bovinus or Pinus sylvestris – Paxillus involutus ectomycorrhizospheres grown in natural forest soil were examined by scanning and transmission electron microscopy. Surfaces of nonmycorrhizal Pinus sylvestris roots hosted large numbers of morphologically distinct bacteria. Bacteria were detected on the mantle surfaces and at inter- and intra-cellular locations in the mantle and Hartig net of Suillus bovinus mycorrhizas. The fungal strands were colonized by only a few bacteria unlike the outermost external fine hyphae on which extensive monolayers of bacteria were attached. The mycorrhizas of Paxillus involutus were mostly devoid of bacteria, but the intact external mycelium supported both bacterial colonies and solitary bacteria. Intracellular bacteria were not present in Paxillus involutus hyphae. In both mycorrhizal systems, bacterial aggregation and attachment to hyphae were mediated with electron-dense or -translucent material. Our study shows that the Pinus sylvestris mycorrhizospheres formed by two different ectomycorrhizal fungi are clearly dissimilar habitats for mycorrhizosphere-associated bacteria. Additionally, the spatially and physiologically defined mycorrhizosphere habitats were shown to host distinct populations of bacteria.Key words: ectomycorrhiza, intracellular bacteria, Paxillus involutus, soil bacteria, Suillus bovinus.
SUMMARYThe early development of indigenous and introduced Scots pine {Pinus sylvestris L.) ectomycorrhiza in natural forest humus was examined using molecular fingerprinting techniques. Non-mycorrhizal or mycorrhizal (Suillus bovinus (L. ex Fr.) O. Kuntze or Paxillus involutus (Batsch ex Fr.) Fr.) seedlings were placed in transparent twodimensional microcosms on a thin layer of sieved humus to allow observation of ectomycorrhizal development and fungal growth. Twelve ectomycorrhizal morphotypes, mainly based on colour, gross morphology and outer mantle structure, were identified over a 3-month period. No successional trends in mycorrhiza formation were observed. For further characterization, individual ectomycorrhiza representing the different morphotypes were subjected to analyses of esterase (FST) isozyme profiles and RFLPs of the internal transcribed spacer (ITS) from fungal rRNA genes following amplification using PCR. All 10 morphotypes analysed displayed different esterase isozyme profiles, and the characteristic 5. bovinus species diagnostic band {S. b. EST8) was detected in two white morphotypes. Ten Pink and Black ectomycorrhiza were all separated into one and three groups, respectively. A fast-running plant-specific polymorphic locus (Z) was also confirmed in most ectomycorrhizal morphotypes. Diagnostic species-specific {S. bovinus and Pink) EST bands were detected in intact external mycelium colonizing soil. Successful amplification of the ITS from individual ectomycorrhiza, of eight different morphotypes, was found to be mainly infiuenced by the DNA template concentration. Different RFLPs {Hini I, Mbo I and Hha I) of the ITS placed the white morphotypes into two groups, one corresponding to S. bovinus, in agreement with the esterase fingerprinting. By contrast. Pink and Beige morphotypes displayed different EST profiles but nearly identical RFLP fingerprints. The ITS amplification success rate of standardized DNA template concentrations from 10 individual Pink and Black ectomycorrhiza was 90 and 50%, respectively. In all successful amplifications, the black morphotype yielded the smallest ITS fragment, similar to earlier reports for Cenococcum geophilum, that gave identical RFLPs. The ecological significance of the observed mycorrhizal diversity and combined application of these two identification methods is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.