We show the opportunity of fabricating axially symmetric waveplates fine tuned to a desired wavelength. High quality waveplates are obtained using liquid crystal polymer layers on photoaligning substrates extending their functional range from UV to IR wavelengths. We characterize the effect of the waveplate on laser beams showing formation of a doughnut beam with over 240 times attenuation of intensity on the axis. We pay attention that the power density is strongly reduced on the doughnut ring as well and use this opportunity for taking charge coupled devices (CCDs) out of a deep saturation regime. Strong deformation of the beam profile is observed when the vortex axis is shifted towards the periferies of the beam. We demonstrate feasibility of using this phenomenon for shaping the profile of light beams with a set of waveplates.
Geometrical phase or the fourth generation (4G) optics enables realization of optical components (lenses, prisms, gratings, spiral phase plates, etc.) by patterning the optical axis orientation in the plane of thin anisotropic films. Such components exhibit near 100% diffraction efficiency over a broadband of wavelengths. The films are obtained by coating liquid crystalline (LC) materials over substrates with patterned alignment conditions. Photo-anisotropic materials are used for producing desired alignment conditions at the substrate surface. We present and discuss here an opportunity of producing the widest variety of "free-form" 4G optical components with arbitrary spatial patterns of the optical anisotropy axis orientation with the aid of a digital spatial light polarization converter (DSLPC). The DSLPC is based on a reflective, high resolution spatial light modulator (SLM) combined with an "ad hoc" optical setup. The most attractive feature of the use of a DSLPC for photoalignment of nanometer thin photo-anisotropic coatings is that the orientation of the alignment layer, and therefore of the fabricated LC or LC polymer (LCP) components can be specified on a pixel-by-pixel basis with high spatial resolution. By varying the optical magnification or de-magnification the spatial resolution of the photoaligned layer can be adjusted to an optimum for each application. With a simple "click" it is possible to record different optical components as well as arbitrary patterns ranging from lenses to invisible labels and other transparent labels that reveal different images depending on the side from which they are viewed.
The ability of optical axis gratings (OAGs) to fully transfer the energy of an unpolarized incident light beam into the ±1st diffraction orders is explored below for development of a polarization-independent optical system with nonlinear transmission. Diffractive properties of OAGs based on azo dye doped liquid crystals (azo LCs) are efficiently controlled with low power radiation. Switching from diffractive to transmissive states of the OAG takes place within 50 ms at 60 W/cm2 power density level, while the diffractive state is restored within ~ 1 s in the absence of radiation. High contrast optical switching is demonstrated with violet as well as green laser beams. A photoswitchable OAG is paired with a light-insensitive OAG in diffraction compensation configuration to obtain an optical system switchable from high to low transmission state. The thinness of OAGs required for high contrast switching ensures high overall transmission of the system. Given also the spectrally and angularly broadband nature of OAG diffraction and the capability of azo LC material systems to respond both to cw as well as short laser pulses makes the optical system under discussion very promising for optical switching applications. Presentation of these results is preceded by an "opinionated" review of prior developments and demystifying of the fabrication technique of high efficiency large area OAGs.
We report on lenses that operate over the visible wavelength band from 450 nm to beyond 700 nm, and other lenses that operate over a wide region in the near-infrared from 650 nm to beyond 1000 nm. Lenses were recorded in liquid crystal polymer layers only a few micrometers thick, using laser-based photoalignment and UV photopolymerization. Waveplate lenses allowed focusing and defocusing laser beams depending on the sign of the circularity of laser beam polarization. Diffraction efficiency of recorded waveplate lenses was up to 90% and contrast ratio was up to 500:1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.