Understanding the mechanoresponsiveness of adipocytes and the characteristics of the mechanical stimuli that regulate adipogenesis is critically important in establishing knowledge in regard to the long-term effects of a sedentary lifestyle (or immobility in extreme medical conditions) as well as concerning obesity and related diseases. In this study we subjected 3T3-L1 preadipocytes cultured on elastic substrata to different levels of static equiaxial tensile strains within the physiological range, up to substrate tensile strain (STS) of 12%, while inducing differentiation in the cultures. Based on prior work which revealed that adipogenesis is accelerated in cultures subjected to STS of 12% by activating the mitogen-activated protein kinase kinase signaling pathway, we were specifically interested in identifying the STS levels which trigger this process. We hence monitored the production and accumulation of lipid droplets (LDs) using a non-destructive, image-processing-based method that we have previously developed, for a period of 4 weeks. The experimental data demonstrated accelerated adipogenesis in the cultures subjected to STS levels of 6%, 9%, and 12% with respect to cultures subjected to STS of 3% and (non-stretched) control cultures. This accelerated adipogenic response to the large sustained STS manifested in significantly larger numbers and greater sizes of LDs in the cultures that were stretched to large STS levels (p < 0.05), starting at approximately day 14 following induction of differentiation. Hence, indeed, there appears to be a certain tensile strain threshold, or domain-which is found within the physiological range-above which the responsiveness of adipocytes to sustained static stretching increases and is manifested in accelerated adipogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.